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Abstract

Stabilizing an unknown dynamical system is one of the central problems in con-
trol theory. In this paper, we study the sample complexity of the learn-to-stabilize
problem in Linear Time-Invariant (LTI) systems on a single trajectory. Current
state-of-the-art approaches require a sample complexity linear in n, the state di-
mension, which incurs a state norm that blows up exponentially in n. We propose
a novel algorithm based on spectral decomposition that only needs to learn “a
small part” of the dynamical matrix acting on its unstable subspace. We show
that, under proper assumptions, our algorithm stabilizes an LTI system on a single
trajectory with O(k log n) samples, where k is the instability index of the system.
This represents the first sub-linear sample complexity result for the stabilization
of LTI systems under the regime when k = o(n).

1 Introduction

Linear Time-Invariant (LTI) systems, namely xt+1 = Axt + But, where xt ∈ Rn is the state and
ut ∈ Rm is the control input, are one of the most fundamental dynamical systems in control theory,
and have wide applications across engineering, economics and societal domains. For systems with
known dynamical matrices (A,B), there is a well-developed theory for designing feedback con-
trollers with guaranteed stability, robustness, and performance [1, 2]. However, these tools cannot
be directly applied when (A,B) is unknown.

Driven by the success of machine learning [3, 4], there has been significant interest in learning-based
(adaptive) control, where the learner does not know the underlying system dynamics and learns to
control the system in an online manner, usually with the goal of achieving low regret [5–13].

Despite the progress, an important limitation in this line of work is a common assumption that the
learner has a priori access to a known stabilizing controller. This assumption simplifies the learning
task, since it ensures a bounded state trajectory in the learning stage, and thus enables the learner to
learn with low regret. However, assuming a known stabilizing controller is not practical, as stabi-
lization itself is nontrivial and considered equally important as any other performance guarantee.

To overcome this limitation, in this paper we consider the learn-to-stabilize problem, i.e., learning
to stabilize an unknown dynamical system without prior knowledge of any stabilizing controller.

†This work is supported by NSF Grants CNS-2146814, CPS-2136197, CNS-2106403, NGSDI-2105648,
EPCN-2154171, with additional support from Amazon AWS.
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Understanding the learn-to-stabilize problem is of great importance to the learning-based control
literature, as it serves as a precursor to any learning-based control algorithms that assume knowledge
of a stabilizing controller.

The learn-to-stabilize problem has attracted extensive attention recently. For example, [14] and [15]
adopt a model-based approach that first excites the open-loop system to learn dynamical matrices
(A,B), and then designs a stabilizing controller, with a sample complexity scaling linearly in n, the
state dimension. However, a linearly-scaling sample complexity could be unsatisfactory for some
specific instances, since the state trajectory still blows up exponentially when the open-loop system
is unstable, incurring a 2Θ̃(n) state norm, and hence a 2Θ̃(n) regret (in LQR settings, for example).
Another recent work [16] proposes a policy-gradient-based discount annealing method that solves
a series of discounted LQR problems with increasing discount factors, and shows that the control
policy converges to a near-optimal policy. However, this model-free approach only guarantees a
poly(n) sample complexity. In fact, to the best of our knowledge, state-of-the-art learn-to-stabilize
algorithms with theoretical guarantees always incur state norms exponential in n.

It has been shown in [15] that all general-purpose control algorithms are doomed to suffer a worst-
case regret of 2Ω(n). This result is intuitive, since from an information-theoretic perspective, a
complete recovery of A should take Θ(n) samples since A itself involves n2 parameters. However,
this does not rule out the possibility that we can achieve better regret in specific systems. Our work is
motivated by the observation that it is not always necessary to learn the whole matrix A to stabilize
an LTI system. For example, if the system is open-loop stable, we do not need to learn anything to
stabilize it. For general LTI systems, it is still intuitive that open-loop stable “modes” exist and need
not be learned for the learn-to-stabilize problem. So, we focus on learning a controller that stabilizes
only the unstable “modes”, making it possible to learn a stabilizing controller without exponentially
exploding state norms. The central question of this paper is:

Can we exploit instance-specific properties of an LTI system to learn to stabilize it
on a single trajectory, without incurring a state norm exponentially large in n?

Contribution. In this paper, we answer the above question by designing an algorithm that stabilizes
an LTI system with only O(k log n) state samples along a single trajectory, where k is the instability
index of the open-loop system and is defined as the number of unstable “modes” (i.e., eigenvalues
with moduli larger than 1) of matrix A. Our result is significant in the sense that k can be consid-
erably smaller than n for practical systems and, in such cases, our algorithm stabilizes the system
using asymptotically fewer samples than prior work; specifically, it only incurs a state norm (and
regret) in the order of 2O(k logn), much smaller than 2O(n) of prior state of the art when k ≪ n.

To formalize the concept of unstable “modes” for the presentation of our algorithm and analysis,
we formulate a novel framework based on the spectral decomposition of dynamical matrix A. More
specifically, we focus on the unstable subspace Eu spanned by the eigenvectors corresponding to
unstable eigenvalues, and consider the system dynamics “restricted” to it — states are orthogonally
projected onto Eu, and we only have to learn the effective part of A within subspace Eu, which
takes only O(k) samples. The formulation is explained in detail in Section 3.1 and Appendix A.
We comment that this idea of decomposition is in stark contrast to prior work, which in one way or
another seeks to learn the entire A (or other similar quantities).

Related work. Our work contributes to and builds upon related works described below.

Learning for control assuming known stabilizing controllers. There has been a large literature on
learning-based control with known stabilizing controllers. For example, one line of research utilizes
model-free policy optimization approaches to learn the optimal controller for LTI systems [5–7, 17–
30]. All of these works require a known stabilizing controller as an initializer for the policy search
method. Another line of research uses model-based methods, i.e., learning dynamical matrices
(A,B) first before designing a controller, which also require a known stabilizing controller (e.g.,
[31–39]). Compared to these works, we focus on the learn-to-stabilize problem without knowledge
of an initial stabilizing controller, which can serve as a precursor to existing learning-for-control
works that require a known stabilizing controller.

Learning to stabilize on a single trajectory. Stabilizing linear systems over infinite horizons with
asymptotic convergence guarantees is a classical problem that has been studied extensively in a
wide range of papers such as [40–42]. On the other hand, the problem of system stabilization over
finite horizons remains partially open and has not seen significant progresses. Algorithms incurring
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a 2O(n)O(
√
T ) regret have been proposed in settings that rely on relatively strong assumptions of

controllability and strictly stable transition matrices [13, 43], which has recently been improved to
2Õ(n)+Õ(poly(n)

√
T ) [14, 15]. Another model-based approach that merely assumes stabilizability

is introduced in [44], though it does not provide guarantees on regret or sample complexity. A
more recent model-free approach based on policy gradient [16] provides a novel perspective into
this problem, yet it can only guarantee a poly(n) sample complexity. Compared to these previous
works, our approach requires only O(k log n) samples, incurring a sub-exponential state norm.

Another recent work [45] proposes to do partial system identification via projecting the state onto a
lower-dimensional subspace, which is similar in intuition with our work. However, the problem con-
sidered there is system stabilization with a fixed initial state x0, and their approach only eliminates
the unstable component along that specific trajectory in k steps when x0 lies in a k-dimensional sub-
space. In contrast, our approach finds a stabilizing controller for the system with sub-linear sample
complexity along an arbitrary trajectory regardless of the initial state.

Learning to stabilize on multiple trajectories. There are also works [12, 46] that do not assume
known stabilizing controllers and learn the full dynamics before designing an optimal stabilizing
controller. While requiring Θ̃(n) samples which is larger than Õ(k) of our work, those approaches
do not have the exponentially large state norm issue as they allow multiple trajectories; i.e., the state
can be “reset” to 0 so that it won’t get too large. In contrast, we focus on the more challenging
single-trajectory scenario where the state cannot be reset.

System Identification. Our work is also related to the system identification literature, which focuses
on learning the system parameters of dynamical systems, with early works like [47] focusing on
asymptotic guarantees, and more recent works such as [48–53] focusing on finite-time guarantees.
Our approach also identifies the system (partially) before constructing a stabilizing controller, but
we only identify a part of A rather than the entire A.

2 Problem Formulation

We consider a noiseless LTI system xt+1 = Axt +But, where xt ∈ Rn and ut ∈ Rm are the state
and control input at time step t, respectively. The dynamical matrices A ∈ Rn×n and B ∈ Rn×m

are unknown to the learner. The learner is allowed to learn about the system by interacting with it
on a single trajectory — the initial state is sampled uniformly at random from the unit hyper-sphere
surface in Rn, and then, at each time step t, the learner is allowed to observe xt and freely determine
ut. The goal of the learner is to learn a stabilizing controller, which is defined as follows.

Definition 2.1 (Stabilizing Controller). Control rule ut = ft(xt, xt−1, · · · , x0) is called a stabiliz-
ing controller if and only if the closed-loop system xt+1 = Axt+But is asymptotically stable; i.e.,
for any x0 ∈ Rn, limt→∞ ∥xt∥ = 0 is guaranteed in the closed-loop system.

To achieve this goal, a simple strategy is to let the system run in open loop to learn (A,B) via least
squares, and then design a stabilizing controller based on the learned dynamical matrices. However,
as has been discussed in the introduction, such a simple strategy inevitably induces an exponentially
large stage norm that is potentially improvable.1 A possible remedy for this is to learn “a small part”
of (A,B) that is crucial for stabilization. Driven by such intuition, the core problem of this paper is
to characterize what is the “small part” and design an algorithm to learn it.

Note that, although it is common to include an additive disturbance term wt in the LTI dynamics,
the introduction of stochasticity does not provide additional insights into our decomposition-based
algorithm, but rather, merely makes the analysis more technically challenging. Therefore, here we
simply omit the noise in theoretical results for the clarity of exposition, and will show by numerical
experiments that our algorithm can also handle disturbances (see Appendix H).

Notation. For z ∈ C, |z| is the modulus of z. For a matrix A ∈ Rp×q , A⊤ denotes the transpose of
A; ∥A∥ is the induced 2-norm of A (equal to its largest singular value), and σmin(A) is the smallest
singular value of A; when A is square, ρ(A) denotes the spectral radius of A, and κe(A) denotes the
condition number of the matrix consisting of A’s eigenvectors as columns. The space spanned by

1More sophisticated exploration strategies might be adopted to learn (A,B) [13, 15, 44], but as long as the
control inputs do not completely cancel out the “dominant part” of the states, the above intuition still holds to
a large extent as the ‘dominant part” of the state is still blowing up exponentially.
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{v1, · · · , vp} is denoted by span(v1, · · · , vp), and the column space of A is denoted by col(A). For
two subspaces U, V of Rn, U⊥ is the orthogonal complement of U , and U ⊕ V is the direct sum of
U and V . The zero matrix and identity matrix are denoted by 0, I , respectively.

3 Learning to Stabilize from Zero (LTS0)

The core of this paper is a novel algorithm, Learning to Stabilize from Zero (LTS0), that utilizes a
decomposition of the state space based on a characterization of the notion of unstable “modes”. The
decomposition and other preliminaries for the algorithm are first introduced in Section 3.1, and then
we proceed to describe LTS0 in Section 3.2.

3.1 Algorithm Preliminaries

We first introduce the decomposition of the state space in Section 3.1.1, which formally defines the
“small part” of A mentioned in the introduction. Then, we introduce τ -hop control in Section 3.1.2,
so that we can construct a stabilizing controller based only on the “small part” of A (as opposed to
the entire A). Together, these two ideas form the basis of LTS0.

3.1.1 Decomposition of the State Space

Consider the open-loop system xt+1 = Axt. Suppose that A is diagonalizable, and let λ1, · · · , λn

denote the eigenvalues of A, which are assumed to be distinct and satisfy
|λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.

We define the eigenspaces associated to these eigenvalues: for a real eigenvalue λi ∈ R corre-
sponding to eigenvector vi ∈ Rn, we associate with it a 1-dimensional space Ei = span(vi); for a
complex eigenvalue λi ∈ C \R corresponding to eigenvector vi ∈ Cn, there must exist some j such
that λj = λ̄i (corresponding to eigenvector vj = v̄i), and we associate with them a 2-dimensional
space Ei = Ej = span((vi+ v̄i), i(vi− v̄i)). Further, define the unstable subspace Eu :=

⊕
i≤k Ei

and stable subspace Es :=
⊕

i>k Ei.

As discussed earlier, we only need to learn “a small effective part” of A associated with the un-
stable “modes”, or the unstable eigenvectors of A. For this purpose, in the following we formally
define a decomposition based on the orthogonal projection onto the unstable subspace Eu. This
decomposition forms the foundation of our algorithm.

The Eu ⊕E⊥
u -decomposition. Suppose the unstable subspace Eu and its orthogonal complement

E⊥
u are given by orthonormal bases P1 ∈ Rn×k and P2 ∈ Rn×(n−k), respectively, namely

Eu = col(P1), E
⊥
u = col(P2).

Let P = [P1 P2], which is also orthonormal and thus P−1 = P⊤ = [P1 P2]
⊤. For convenience, let

Π1 := P1P
⊤
1 and Π2 = P2P

⊤
2 be the orthogonal projectors onto Eu and E⊥

u , respectively. With
the state space decomposition, we proceed to decompose matrix A. Note that Eu is an invariant
subspace with regard to A (but E⊥

u not necessarily is), there exists M1 ∈ Rk×k, ∆ ∈ Rk×(n−k) and
M2 ∈ R(n−k)×(n−k), such that

AP = P

[
M1 ∆

M2

]
⇔ M :=

[
M1 ∆

M2

]
= P−1AP.

In the decomposition, the top-left block M1 ∈ Rk×k represents the action of A on the unstable
subspace. Matrix M1, together with P1, is the “small part” we discussed in the introduction. Note
that M1 (P1) is only k-by-k (n-by-k) and thus takes much fewer samples to learn compared to the
entire A. It is also evident that M1 inherits all unstable eigenvalues of A, while M2 inherits all
stable eigenvalues. Finally, we provide the system dynamics in the transformed coordinates. Let
y = [y⊤1 y⊤2 ]

⊤ be the coordinate representation of x in the basis formed by column vectors of P
(i.e., x = Py). The system dynamics in y-coordinates is[

y1,t+1

y2,t+1

]
= P−1AP

[
y1,t
y2,t

]
+ P−1But =

[
M1 ∆

M2

] [
y1,t
y2,t

]
+

[
P⊤
1 B

P⊤
2 B

]
ut. (1)

The Eu ⊕ Es-decomposition. In the above Eu ⊕ E⊥
u -decomposition, E⊥

u is in general not an
invariant subspace with respect to A. This can be seen from the top-right ∆ block in M , which
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represents how much of the state is “moved” by A from E⊥
u into Eu in one step. The absence of

invariant properties in E⊥
u is sometimes inconvenient in the analysis. Hence, we introduce another

invariant decomposition that is used in the proof as follows. Specifically, Rn can be naturally decom-
posed into Eu ⊕ Es, and further both Eu and Es are invariant with respect to A. We also represent
Eu = col(Q1) and Es = col(Q2) by their orthonormal bases, and define Q = [Q1 Q2]. Note that,
these two subspaces are generally not orthogonal, so we additionally define Q−1 =: [R⊤

1 R
⊤
2 ]

⊤.
Details are deferred to Appendix A.1.

Lastly, we comment that when A is symmetric, the Eu ⊕ E⊥
u - and Eu ⊕ Es-decompositions are

identical because E⊥
u = Es in such symmetric cases. While E⊥

u ̸= Es in general cases, the “close-
ness” between E⊥

u and Es also contributes to the sample complexity bound in Section 4. For that
reason, we formally define such “closeness” between subspaces in Definition 3.1. We point out that
the definition has clear geometric interpretations and leads to connections between the bases of Es

and E⊥
u , which is technical and thus deferred to Appendix A.2.

Definition 3.1 (ξ-Close Subspaces). For ξ ∈ (0, 1], the subspaces E⊥
u = col(P2), Es = col(Q2)

are called ξ-close to each other, if and only if σmin(P
⊤
2 Q2) > 1− ξ.

3.1.2 τ -hop Control

This section discusses the design of controller based only on the “small part” of A, i.e., the P1

and M1 matrices discussed in Section 3.1.1, as opposed to the entire A matrix. Note that the main
objective of this subsection is to introduce the idea of our controller design when M1 and P1 are
known without errors, whereas in Section 3.2 we fully introduce Algorithm 1 that learns M1 and P1

before constructing the stabilizing controller.

As discussed in Section 3.1.1, we can view M1 as the “restriction” of A onto the unstable subspace
Eu (spanned by the basis in P1) and it captures all the unstable eigenvalues of A. Since only M1

and P1 are known while M2 and P2 are unknown, a simple idea is to “restrict” the system trajectory
entirely to Eu such that the effect of A is fully captured by M1, the part of A that is known. However,
such a restriction is not possible because, even if the current state xt is in Eu (so Axt is also in Eu),
xt+1 = Axt + But is generally not in Eu with non-zero ut. To address this issue, recall that a
desirable property of the stable component is that it spontaneously dies out in open loop. Therefore,
we propose the following τ -hop controller design, where the control input is only injected every
τ steps — in this way, we let the stable component die out exponentially between two consecutive
control injections. Consequently, when we examine the states every τ steps, we could expect that
the trajectory appears approximately “restricted to” the unstable subspace Eu.

More formally, a τ -hop controller only injects non-zero ut for t = sτ , s ∈ N. Let x̃s := xsτ and
ũs := usτ to be the state and input every τ time steps. We can write the dynamics of the τ -hop
control system as x̃s+1 = Aτ x̃s + Aτ−1Bũs. We also let ỹs to denote the state under Eu ⊕ E⊥

u -
decomposition, i.e. ỹs = P⊤x̃s. Then the state evolution can be written as[

ỹ1,s+1

ỹ2,s+1

]
= P−1AτP

[
ỹ1,s
ỹ2,s

]
+ P−1Aτ−1Bũs = Mτ

[
ỹ1,s
ỹ2,s

]
+

[
P⊤
1 Aτ−1B

P⊤
2 Aτ−1B

]
ũs, (2)

where we define Bτ := P⊤
1 Aτ−1B for simplicity, and

Mτ =

([
M1

M2

]
+

[
0 ∆

0

])τ

=

[
Mτ

1

∑τ−1
i=0 M i

1∆Mτ−1−i
2

Mτ
2

]
=:

[
Mτ

1 ∆τ

Mτ
2

]
.

Now we consider a state feedback controller ũs = K1ỹ1,s in the τ -hop control system that only acts
on the unstable component ỹ1,s, the closed-loop dynamics of which can then be written as

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK1 ∆τ

P⊤
2 Aτ−1BK1 Mτ

2

]
ỹs. (3)

In (3), the bottom-left block becomes P⊤
2 Aτ−1BK1, which is exponentially small in τ . Therefore,

with a properly chosen τ , the closed-loop dynamical matrix in (3) is almost block-upper-triangular
with the bottom-right block very close to 0 (recall that M2 is a stable matrix). As a result, if we
select K1 such that Mτ

1 + P⊤
1 Aτ−1BK1 is stable, then (3) will become stable as well. There are

different ways to select such K1, and in this paper, we focus on the simple case that B is an n-by-k
matrix and P⊤

1 Aτ−1B is an invertible square matrix (see Assumption 4.3′), in which case selecting

K1 = −(P⊤
1 Aτ−1B)−1Mτ

1 (4)
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will suffice. Note that such a controller design will also need the knowledge of P⊤
1 Aτ−1B, which

has the same dimension as M1 (a k-by-k matrix) and takes only O(k) additional samples to learn.
For the case that B is not n-by-k, similar controller design can be done (but in a slightly more
involved way), and we defer the discussion to Appendix C.

We also point out that, for the case where A is symmetric, selecting τ = 1 should work well. This
is because ∆τ = 0 in (3) for the symmetric case, and therefore, the matrix in (3) will be triangular
even for τ = 1. This will result in a simpler algorithm and controller design, and hence a better
sample complexity bound, which we will present as Theorem 4.2 in Section 4.

We end this subsection with some comments on the role of τ -hop stabilizing controllers. One may
wonder if the controller design proposed here would be compatible with many downstream tasks,
since the closed-loop system stabilized by a τ -hop controller will still experience periodical fluctua-
tions in state norms (although in a bounded manner). However, we want to emphasize again that the
τ -hop controller can serve as a precursor to any online control algorithm that assumes a known sta-
bilizing controller, which includes system identification from stable trajectories (see, e.g., [48, 50])
and controller designs using the identified system. In this way the state norm fluctuation is only
transient, and does not harm to the overall performance significantly.

3.2 Algorithm

Our algorithm, LTS0, is divided into 4 stages: (i) learn an orthonormal basis P1 of the unstable
subspace Eu (Stage 1); (ii) learn M1, the restriction of A onto the subspace Eu (Stage 2); (iii) learn
Bτ = P⊤

1 Aτ−1B (Stage 3); and (iv) design a controller that seeks to cancel out the “unstable” M1

matrix (Stage 4). This is formally described as Algorithm 1 below.

Algorithm 1 LTS0: Learning a τ -hop Stabilizing Controller

1: Stage 1: learn the unstable subspace of A.
2: Run the system in open loop for t0 steps for initialization.
3: Run the system in open loop for k more steps and let D ← [xt0+1 · · · xt0+k].
4: Calculate Π̂1 ← D(D⊤D)−1D⊤.
5: Calculate the top k (normalized) eigenvectors v̂1, · · · v̂k of Π̂1, and let P̂1 ← [v̂1 · · · v̂k].
6: Stage 2: approximate M1 on the unstable subspace.
7: Solve the least squares M̂1 ← argminM1∈Rk×k L(M1) :=

∑t0+k
t=t0+1 ∥P̂⊤

1 xt+1 − M̂1P̂
⊤
1 xt∥2.

8: Stage 3: restore Bτ for τ -hop control.
9: for i← 1, · · · , k do

10: Let the system run in open loop for ω time steps.
11: Run for τ more steps with initial uti = α∥xti∥ei, where ti = t0 + k + iω + (i− 1)τ .
12: Let B̂τ ← [b̂1 · · · b̂k], where the ith column b̂i ← 1

α∥xti
∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
.

13: Stage 4: construct a τ -hop stabilizing controller K.
14: Construct the τ -hop stabilizing controller K̂ ← −B̂−1

τ M̂τ
1 P̂

⊤
1 .

In the remainder of this section we provide detailed descriptions of the four stages in LTS0.

Stage 1: Learn the unstable subspace of A. It suffices to learn an orthonormal basis of Eu. We
notice that, when A is applied recursively, it will push the state closer to Eu. Therefore, when we
let the system run in open loop (with control input ut ≡ 0) for t0 time steps, the ratio between
the norms of unstable and stable components will be magnified exponentially, and the state lies
“almost” in Eu. As a result, the subspace spanned by the next k states, i.e. the column space of
D := [xt0+1 · · · xt0+k], is very close to Eu. This motivates us to use the orthogonal projector
onto col(D), namely Π̂1 = D(D⊤D)−1D⊤, as an estimation of the projector Π1 = P1P

⊤
1 onto

Eu. Finally, the columns of P̂1 are restored by taking the top k eigenvectors of Π̂1 with largest
eigenvalues (they should be very close to 1), which form a basis of the estimated unstable subspace.

Stage 2: Learn M1 on the unstable subspace. Recall that M1 is the “dynamical matrix” for the
Eu-component under the Eu⊕E⊥

u -decomposition. Therefore, to estimate M1, we first calculate the
coordinates of the states xt0+1:t0+k under basis P1; that is, ŷ1,t = P̂⊤

1 xt, for t = t0 +1, . . . , t0 + k.

6



Then, we use least squares to estimate M1, which minimizes the square loss over M̂1

L(M̂1) :=

t0+k∑
t=t0+1

∥ŷ1,t+1 − M̂1ŷ1,t∥2 =

t0+k∑
t=t0+1

∥P̂⊤
1 xt+1 − M̂1P̂

⊤
1 xt∥2. (5)

It can be shown that the unique solution to (5) is M̂1 = P̂⊤
1 AP̂1 (see Appendix B).

Stage 3: Restore Bτ for τ -hop control. In this step, we restore the Bτ that quantifies the “effective
component” of control inputs restricted to Eu (see Section 3.1.2 for detailed discussion). Note that
equation (2) can be rewritten in terms of y1,t as

y1,ti+τ = Mτy1,ti +∆τy2,ti +Bτuti .

Hence, for the purpose of estimation, we simply ignore the ∆τ term, and take the ith column as

b̂i ←
1

∥uti∥
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)
,

where uti is parallel to ei, and the magnitude of uti is set to be large enough as α∥xti∥ to amplify its
effect so that the estimation error of A is comparatively negligible. Here we introduce an adjustable
constant α to guarantee that the Eu-component still constitutes a non-negligible proportion of the
state after injecting uti , so that the iterative restoration of columns could continue.

It is evident that the ignored ∆τP
⊤
2 xti term will introduce an extra estimation error. Since ∆τ

contains a factor of Mτ−1
1 ∆ that explodes with respect to τ , this part can only be bounded if ∥P⊤

2 xti
∥

∥xti
∥

is sufficiently small. For this purpose, we introduce ω heat-up steps (running in open loop with 0
control input) to reduce the ratio to an acceptable level, during which time the projection of state
onto E⊥

u automatically diminishes over time since ρ(M2) = |λk+1| < 1.

Stage 4: Construct a τ -hop stabilizing controller K. Finally, we can design a controller that
cancels out Mτ

1 in the τ -hop system. As mentioned in Section 3.1.2, we shall focus on the case
where B is an n-by-k matrix for the sake of exposition (the case for general B will be discussed in
Appendix C). The invertibility of Bτ can be guaranteed under certain conditions (Assumption 4.3′);
further, B̂τ is also invertible as long as it is close enough to Bτ . In this case, the τ -hop stabilizing
controller can be simpliy designed as K̂1 = −B̂−1

τ M̂τ
1 in y-coordinates where we replace Bτ and

M1 in (4) with their estimates. When we return to the original x-coordinates, the controller becomes
K̂ = −B̂−1

τ M̂τ
1 P̂

⊤
1 . Note that K̂ (and K̂1) appears with a hat to emphasize the use of estimated

projector P̂1, which introduces an extra estimation error to the final closed-loop dynamics.

It is evident that the algorithm terminates in t0 + k(1 + ω + τ) time steps. In the next section, we
show how to choose the parameters to guarantee both stability and sub-linear sample complexity.

Finally, we remark that, although for the ease of exposition we have assumed here the instability
index k is known, it is fine to use an estimate of k that is larger than its true value in practice —
i.e., the algorithm still outputs a stabilizing controller since the performance analysis only relies on
the ratio between eigenvalues and the stability of λk+1, and the complexity only suffers little if the
guess of k is close to its true value.

4 Stability Guarantee

In this section, we formally state the assumptions and show the sample complexity for the proposed
algorithm to find a stabilizing controller. Our first assumption is regarding the spectral properties
of A, where we require all eigenvalues to appear without multiplicity (so that we can learn a com-
plete basis of each eigenspace), and marginally stable eigenvalues (i.e., those with moduli 1) are
eliminated (so that eigenspaces are either stable or unstable). We would like to point out that it is
common practice (e.g., [50]) to discuss marginally stable eigenvalues separately, since it obscures
the distinction between stable and unstable components and is thus technically challenging.
Assumption 4.1 (Spectral Property). A is diagonalizable with instability index k, with distinct
eigenvalues λ1, · · · , λn satisfying |λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 > |λk+1| ≥ · · · ≥ |λn|.

The assumption is mild in the sense that matrices satisfying Assumption 4.1 are dense in Rn×n, and
our final complexity bound only depends logarithmically on the condition number of eigenvectors
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κe(A) and the eigen-gap λk/λk+1 (see Theorem 4.1 and the discussion below). Thus any matrix A
that violates Assumption 4.1 can be handled via small perturbations.

Our second assumption is regarding how to choose the initial state, which again is standard. The ini-
tialization must be randomized to eliminate the coincidence where x0 has zero (oblique) projection
onto some eigenvector vi, in which case we cannot learn about vi and thus D is not invertible.
Assumption 4.2 (Initialization). The initial state of the system is sampled uniformly at random on
the unit hyper-sphere surface in Rn.

Lastly, we assume the system to be (d, σ)-strongly controllable, which is standard in literature.
Assumption 4.3 ((ν, σ)-Strong Controllability). The system is (ν, σ)-strongly controllable; i.e.,
σmin(Cν) > σ, where Cν := [Aν−1B Aν−2B · · · AB B] is the ν-step controllability matrix.

Above are all the assumptions we need. However, we remind the readers that, when we introduce the
τ -hop controller design in Section 3.1.2, B is assumed to have k columns and certain assumptions
are needed to guarantee the invertibility of B1. Indeed, for the ease of exposition, we first consider
this special case in presenting our main result (Theorem 4.1) below, where we impose the following
Assumption 4.3′ regarding the controllability within the unstable subspace Eu instead of the more
general Assumption 4.3 (recall that R1 is defined in the Eu ⊕ Es-decomposition in Section 3.1.1).
Discussions on how to handle the more general Assumption 4.3 via a transformation to the special
case (where Assumption 4.3′ holds) are deferred to Appendix C.
Assumption 4.3′ (c-Effective Control in Unstable Subspace). B ∈ Rn×k, σmin(R1B) > c∥B∥.

Note that Assumption 4.3′ has a clear intuition — every direction in the unstable subspace receives
at least a proportion of c from the influence of any control input. This assumption is reasonable
in that, if σmin(R1B) ≈ 0, the control input u has to be very large to push the state along the
direction corresponding to the smallest singular value, which could induce excessively large control
cost. We can also interpret the lower bound on σmin(R1B) as a special case of Assumption 4.3 (i.e.,
(1, c∥B∥)-strong controllablility). Details can be found in Appendix C.

In the following we present the main performance guarantees for our algorithm.
Theorem 4.1 (Main Theorem). Given a noiseless LTI system xt+1 = Axt + But subject to As-
sumptions 4.1, 4.2 and 4.3′, and additionally |λ1|2|λk+1| < |λk|, by running LTS0 with parameters

τ = O(1), ω = O(ℓ log k), α = O(1), t0 = O(k log n)

that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop system is exponen-
tially stable with probability 1−O(k−ℓ) over the initialization of x0 for any ℓ ∈ N. Here the big-O
notation only shows dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥,
∥B∥, c, α, ξ (recall that E⊥

u and Es are ξ-close), χ(L̂τ ) (see Lemma D.1), and ζε(·) (see Lemma
G.1), and details can be found in equations (41) through (46).

Theorem 4.1 shows the proposed LTS0 algorithm can find a stabilizing controller in Õ(k) steps,
which incurs a state norm of 2Õ(k), significantly smaller than the state-of-the-art 2Θ(n) in the k ≪ n
regime. We would like to point out that this does not violate the lower bound shown in [15], since
the state norm degenerates to 2Θ(n) when k = Θ(n), and might degrade arbitrarily for systems with
adversarially designed parameters. Still, for a large proportion of systems with k ≪ n and favorable
constants, our algorithm achieves better performance than the naive ones. The theoretical result is
also verified by numerical experiments, the details of which can be found in Appendix H.

Discussion on constants. Curious readers can refer to Appendix G (equations (41) through (46)) for
detailed expressions of the constants hidden behind the big-O notation in the theorem; Table 1 also
summarizes all instance-specific constants appearing in the bound. Here we provide a brief overview
how the bound depends on the system parameters. It is evident that, for a system with larger ξ (i.e.,
when Eu and Es are “less orthogonal” to each other) or smaller c (i.e., when it costs more to control
the unstable subspace), we see a larger τ in (41), a smaller α in (43), and larger t0 and ω in (45) and
(46), respectively, which altogether incur a larger constant term in the sample complexity. This is in
accordance with our intuition of the state space decomposition and Assumption 4.3′, respectively.

The bound also relies heavily on the spectral properties of A. The constraint |λ1|2|λk+1| < |λk|
ensures validity of (41), which is necessary for cancelling out the combined effect of non-orthogonal
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subspaces Eu and Es (resulting in ∆τ in the top-right block) and inaccurate basis P̂1 (resulting in
projection error in the bottom-left block) — a system with larger ratio |λ1|2|λk+1|/|λk| suffers from
more severe side-effects, and thus requires a larger τ and a higher sample complexity. Nevertheless,
we believe that this assumption is not essential, and we leave it as future work to relax it.

Another important parameter is the eigen-gap |λk|/|λk+1| around 1 that determines how fast the
stable and unstable components become separable in magnitude when the system runs in open loop,
which is utilized in the t0 initialization steps of Stage 1 and ω heat-up steps of Stage 3. Consequently,
a system with smaller eigen-gap |λk|/|λk+1| requires a larger t0 (see (10)) and ω (see (46)) and
therefore a higher sample complexity.

The condition number of eigenvectors κe(A) also contributes to the bound of t0, the number of
initialization steps. It is intuitive that, a large κe(A) indicates less orthogonal eigenspaces, which
in turn requires a more distinct separation among the magnitudes of different eigen-components of
xt0 , so that the stable components interfere less with the unstable ones.

Finally, we would like to point out that all these quantities appear in the bound as logarithmic terms,
indicating that the sample complexity only degrades mildly when the constants become worse.

A warm-up case. Despite the generality of Theorem 4.1, its proof involves technical difficulties.
In Theorem 4.2, we include results for the special case where A is real symmetric, which leads to a
simpler choice of algorithm parameters and a cleaner sample complexity bound.

Theorem 4.2. Given a noiseless LTI system xt+1 = Axt + But subject to Assumptions 4.1, 4.2
and 4.3′ with symmetric A, by running LTS0 with parameters τ = 1, ω = 0, α = 1, t0 =
O(k log n) that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop system
is exponentially stable with probability 1 over the initialization of x0. Here the big-O notation only
shows dependence on k and n, while hiding parameters like |λ1|, |λk|, |λk+1|, ∥A∥, ∥B∥, c, and
χ(L̂1) (see Lemma D.1), and details can be found in equation (18).

Although Theorem 4.2 takes a simpler form, its proof still captures the main insight of our analysis.
For this reason, we use the proof of Theorem 4.2 as a warm-up example in Appendix F before we
present the proof ideas of the main Theorem 4.1.

5 Proof Outline

In this section we will give a high-level overview of the key proof ideas for the main theorems. The
full proof details can be found in Appendices E, F and G as indicated below.

Proof Structure. The proof is largely divided into two steps. In Step 1, we examine how accurate
the learner estimates the unstable subspace Eu in Stage 1 and 2. We will show that Π1, P1 and M1

can be estimated up to an error of δ within t0 = O(k log n− log δ) steps. In Step 2, we examine the
estimation error of M1 and Bτ in Stage 2 and 3 (and thus K̂1), based on which we will eventually
show that the τ -hop controller output by Algorithm 1 makes the system asymptotically stable. The
proof is based on a detailed spectral analysis of the closed-loop dynamical matrix.

Overview of Step 1. To upper bound the estimation errors in Stage 1 and 2, we only have to notice
that the estimation error of Π1 completely captures how well the unstable subspace is estimated, and
all other bounds should follow directly from it. The bound on ∥Π1− Π̂1∥ is shown in Theorem 5.1,
together with a bound on ∥P1 − P̂1∥ presented in Corollary 5.2.

Theorem 5.1. For a noiseless linear dynamical system xt+1 = Axt, let Eu be the unstable subspace
of A, k = dimEu be the instability index of the system, and Π1 be the orthogonal projector onto
subspace Eu. Then for any ε > 0, by running Stage 1 of Algorithm 1 with an arbitrary initial state
that terminates in (t0 + k) time steps, where

t0 = O

k log n− log ε+ log κe(A)

2 log |λk|
|λk+1|

 ,

the matrix D⊤D is invertible with probability 1 (where D = [xt0+1 · · · xt0+k]), and in such cases
we shall obtain an estimated Π̂1 = D(D⊤D)−1D⊤ with error ∥Π̂1 −Π1∥ < ε.
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Corollary 5.2. Under the premises of Theorem 5.1, for any orthonormal basis P̂1 of col(Π̂1) (where
Π̂1 is obtained by Algorithm 1), there exists a corresponding orthonormal basis P1 of col(Π1), such
that ∥P̂1 − P1∥ <

√
2kε =: δ, ∥M̂1 −M1∥ < 2∥A∥δ.

The proofs are deferred to Appendix E due to limited length.

Overview of Step 2. To analyze the stability of the closed-loop system, we shall first write out the
closed-loop dynamics under the τ -hop controller. Recall in Section 3.1.2 we have defined ũs, x̃s, ỹs
to be the control input, state in x-coordinates, and state in y-coordinates in the τ -hop control system,
respectively. Using these notations, the learned controller can be written as

ũs = K̂x̃s = K̂1P̂
⊤
1 P ỹs =

[
K̂1P̂

⊤
1 P1

K̂1P̂
⊤
1 P2

]
ỹs

in y-coordinates (as opposed to K̂1ỹs). Therefore, the closed-loop τ -hop dynamics should be

ỹs+1 =

[
Mτ

1 + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P1 ∆τ + P⊤

1 Aτ−1BK̂1P̂
⊤
1 P2

P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1 Mτ

2 + P⊤
2 Aτ−1BK̂1P̂

⊤
1 P2

] [
ỹ1,s
ỹ2,s

]
=: L̂τ ỹs, (6)

and we will show it to be asymptotically stable (i.e., ρ(L̂τ ) < 1). Note that L̂τ is given by a 2-by-2
block form, we can utilize the following lemma to assist the spectral analysis of block matrices, the
proof of which is deferred to Appendix D.

Lemma 5.3 (Block Perturbation Bound). For 2-by-2 block matrices A =
[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
,

the spectral radii of A and A+ E differ by at most |ρ(A+ E)− ρ(A)| ≤ χ(A+ E)∥E12∥∥E21∥,
where χ(A+ E) is a constant (see Appendix D).

The above lemma shows a clear roadmap for proving ρ(L̂τ ) < 1. First, we need to guarantee stabil-
ity of the diagonal blocks — the top-left block is stable because K̂1 is designed to (approximately)
eliminate it to zero (which requires the estimation error bound on Bτ ), and the bottom-right block
is stable because it is almost Mτ

2 with a negligible error induced by inaccurate projection. Then, we
need to upper-bound the norms of off-diagonal blocks via careful estimation of factors appearing in
these blocks. Complete proofs for both cases can be found in Appendices F and G, respectively.

6 Conclusions

This paper provides a new perspective into the learn-to-stabilize problem. We design a novel al-
gorithm that exploits instance-specific properties to learn to stabilize an unknown LTI system on a
single trajectory. We show that, under certain assumptions, the sample complexity of the algorithm
is upper bounded by O(k log n), which avoids the 2Θ(n) state norm blow-up of existing methods
in the k ≪ n regime. This work initiates a new direction in the learn-to-stabilize literature, and
many interesting and challenging questions remain open, including handling noises, eliminating the
assumptions on spectral properties, and developing better ways to learn the unstable subspace.
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Appendix

A Decomposition of the State Space

A.1 The Eu ⊕Es-decomposition

It is evident that the following two subspaces of Rn are invariant with respect to A, namely

Eu :=
⊕
i≤k

Ei, Es :=
⊕
i>k

Ei

which we refer to as the unstable subspace and the stable subspace of A, respectively. Since the
eigenspaces Ei sum to the whole Rn space, one natural decomposition is Rn = Eu ⊕ Es; accord-
ingly, each state can be uniquely decomposed as x = xu +xs, where xu ∈ Eu is called the unstable
component, and xs ∈ Es is called the stable component.

We also decompose A based on the Eu ⊕ Es-decomposition. Suppose Eu and Es are represented
by their orthonormal bases Q1 ∈ Rn×k and Q2 ∈ Rn×(n−k), respectively, namely

Eu = col(Q1), Es = col(Q2).

Let Q = [Q1 Q2] (which is invertible as long as A is diagonalizable), and let R = [R⊤
1 R⊤

2 ]
⊤ :=

Q−1. Further, let Πu := Q1R1 and Πs = Q2R2 be the oblique projectors onto Eu and Es (along
the other subspace), respectively. Since Eu and Es are both invariant with regard to A, we know
there exists N1 ∈ Rk×k, N2 ∈ R(n−k)×(n−k), such that

AQ = Q

[
N1

N2

]
⇔ N :=

[
N1

N2

]
= RAQ.

Let z = [z⊤1 z⊤2 ]⊤ be the coordinate representation of x in the basis Q (i.e., x = Qz). The system
dynamics in z-coordinates can be expressed as[

z1,t+1

z2,t+1

]
= RAQ

[
z1,t
z2,t

]
+RBut =

[
N1

N2

] [
z1,t
z2,t

]
+

[
R1B
R2B

]
ut.

The major advantage of this decomposition is that the dynamical matrix in z-coordinate is block
diagonal, so it would be simpler to study the behavior of the open-loop system.

A.2 Geometric Interpretation: Principle Angles

E⊥
u

Es

Eu

α1 β1

α2

(β2)

θ1

Before going any further, we emphasize that Definition 3.1
is well-defined by itself, since singular values are preserved
under orthonormal transformations.

It might seem unintuitive to interpret σmin(P
⊤
2 Q2) in Defini-

tion 3.1 as a measure of “closeness”. However, this is closely
related to the principle angles between subspaces that gener-
alize the standard angle measures in lower dimensional cases.
More specifically, we can recursively define the ith principle
angle θi (i = 1, · · · , n− k)as

θi := min

{
arccos

(
⟨x, y⟩
∥x∥∥y∥

) ∣∣∣∣ x ∈ E⊥
u , x ⊥ span(x1, · · · , xi−1);

y ∈ Es, y ⊥ span(y1, · · · , yi−1).

}
=: ∠(xi, yi), (7)

where xi and yi (i = 1, · · · , n−k)are referred to as the ith principle vectors accordingly. Meanwhile,
let P⊤

2 Q2 = UΣV ⊤ be the singular value decomposition (SVD), where Σ = diag(σ1, · · · , σn−k)
and σ1 ≥ · · · ≥ σn−k. Then by an equivalent recursive characterization of singular values, we have

σi = max
∥x∥=∥y∥=1

∀j<i: x⊥xj , y⊥yj

x⊤P⊤
2 Q2y =: x̄⊤

i P
⊤
2 Q2ȳi.

Since P2 and Q2 are orthonormal, x̄i and ȳi can be regarded as coordinate representations of xi =
P2x̄i and yi = Q2ȳi, and it can be easily verified that xi and yi defined in this way are exactly the
minimizers in (7). Hence we conclude that σi = cos θi. Therefore, E⊥

u and Es are ξ-close if and
only if the all principle angles between E⊥

u and Es lie in the interval [0, arccos(1 − ξ)]; the above
argument also shows that we can find orthonormal bases for E⊥

u and Es so that the angles formed
by corresponding vectors are exactly the principle angles.
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A.3 Characterization of ξ-close Subspaces

It is naturally expected that the geometric interpretation should inspire more relationships among
P1 = Q1, P2, Q2, R1, R2 and N2. We would like to emphasize that P1, P2 and Q1 are not confined
to bases consisting of eigenvectors (since they are even not necessarily orthonormal). Meanwhile,
since they are only used in the stability guarantee proof, we are granted the freedom to select any
orthonormal bases. For simplicity, we will stick to the convention that P1 = Q1 (and thus M1 =
N1). Further, in Lemma A.1, such freedom is utilized to establish fundamental relationships between
the bases in the above two decompositions. The results are concluded as follows.
Lemma A.1. Suppose E⊥

u and Es are ξ-close. Then we shall select P2 and Q2 such that

(1) σmin(P
⊤
2 Q2) ≥ 1− ξ, ∥P⊤

1 Q2∥ ≤
√
2ξ, ∥P2 −Q2∥ ≤

√
2ξ.

(2) ∥R2∥ ≤ 1
1−ξ , ∥N2∥ ≤ 1

1−ξ∥A∥.

(3) ∥P⊤
1 −R1∥ ≤

√
2ξ

1−ξ , ∥R1∥ ≤
√
2ξ

1−ξ + 1.

(4) ∥∆∥ ≤ 2−ξ
1−ξ

√
2ξ∥A∥.

Proof. (1) Following the above interpretation, take arbitrary orthonormal bases P̄2 and Q̄2 of E⊥
u

and Es, respectively, and let P̄⊤
2 Q̄2 = UΣV ⊤ be the SVD, which translates to

(P̄2U)⊤(Q̄2V ) = Σ =: diag(σ1, · · · , σn−k).

Since U and V are orthonormal matrices, the columns of P̄2U and Q̄2V also form orthonormal bases
of E⊥

u and Es, respectively. Then ξ-closeness basically says that there exist a basis {α1, · · · , αn−k}
for E⊥

u , and a basis {β1, · · · , βn−k} for Es (both are assumed to be orthonormal), such that

⟨αi, βj⟩ = δijσi =

{
σi ≥ 1− ξ for any i = j

0 for any i ̸= j
,

and we also have Π2βi = σiαi and Π1αi = σiβi (recall that Π1, Π2 are orthogonal projectors
onto subspaces Eu, E

⊥
u , respectively). Therefore, without loss of generality, we shall always select

P2 = [α1 · · · αn−k] and Q2 = [β1 · · · βn−k], such that P⊤
2 Q2 = diag(σ1, · · · , σn−k), and

σmin(P
⊤
2 Q2) = min

i
|σi| ≥ 1− ξ.

Equivalently speaking, for any β = Q2η ∈ Es, we have (note that ∥η∥ = ∥β∥)
∥P⊤

2 β∥ = ∥P⊤
2 Q2η∥ ≥ σmin(P

⊤
2 Q2)∥η∥ ≥ (1− ξ)∥β∥,

and consequently,

∥P⊤
1 Q2η∥ = ∥P⊤

1 β∥ =
√
∥β∥2 − ∥P⊤

2 β∥2 ≤
√

2ξ∥β∥ =
√

2ξ∥η∥,

which further shows ∥P⊤
1 Q2∥ ≤

√
2ξ. To bound ∥P2 −Q2∥, by definition we have

∥P2 −Q2∥ = max
∥η∥=1

∥(P2 −Q2)η∥ = max
∥η∥=1

∥∥∥∥∥∑
i

ηi(αi − βi)

∥∥∥∥∥
= max

∥η∥=1

√∑
i,j

ηiηj(αi − βi)⊤(αj − βj)

= max
∥η∥=1

√∑
i

2(1− µi)η2i

≤ max
∥η∥=1

√
2ξ
∑
i

η2i =
√

2ξ.

Here η = [η1, · · · , ηn−k] is an arbitrary vector in Rn−k.

(2) By definition, I = QR = Q1R1 +Q2R2. Also recall that P1 = Q1, so we have P⊤
1 Q1 = I and

P⊤
2 Q1 = 0. Then by left-multiplying P⊤

2 to the equation, we have

P⊤
2 = P⊤

2 Q1R1 + P⊤
2 Q2R2 = P⊤

2 Q2R2,
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which further shows

∥R2∥ = ∥(P⊤
2 Q2)

−1P⊤
2 ∥ ≤ ∥(P⊤

2 Q2)
−1∥ = 1

σmin(P⊤
2 Q2)

≤ 1

1− ξ
.

Therefore, since N2 = R2AQ2, we have

∥N2∥ = ∥R2AQ2∥ ≤ ∥R2∥∥A∥∥Q2∥ ≤
1

1− ξ
∥A∥.

(3) Similarly, by left-multiplying P⊤
1 to the equation, we have

P⊤
1 = P⊤

1 Q1R1 + P⊤
1 Q2R2 = R1 + P⊤

1 Q2R2,

which further shows

∥P⊤
1 −R1∥ = ∥P⊤

1 Q2R2∥ ≤ ∥P⊤
1 Q2∥∥R2∥ ≤

√
2ξ

1− ξ
,

and therefore ∥R1∥ ≤ ∥P⊤
1 −R1∥+ ∥P⊤

1 ∥ = 1 +
√
2ξ

1−ξ .

(4) A combination of the above results gives

∥∆∥ = ∥P⊤
1 AP2∥ = ∥P⊤

1 AP2 −R1AQ2∥
≤ ∥P⊤

1 A(P2 −Q2)∥+ ∥(P⊤
1 −R1)AQ2∥

≤ ∥P⊤
1 ∥∥A∥∥P2 −Q2∥+ ∥P⊤

1 −R1∥∥A∥∥Q2∥

≤ ∥A∥
√
2ξ +

√
2ξ

1− ξ
∥A∥ = 2− ξ

1− ξ

√
2ξ∥A∥.

This completes the proof.

B Solution to the Least Squares Problem in Stage 2

Lemma B.1 gives the explicit form for the solution to the least squares problem (see Algorithm 1).

Lemma B.1. Given D := [xt0+1 · · · xt0+k] and P̂1P̂
⊤
1 = Π̂1 = D(D⊤D)−1D⊤, the solution

M̂1 = argmin
M1

t0+k∑
t=t0+1

∥P̂⊤
1 xt+1 −M1P̂

⊤
1 xt∥2

is uniquely given by M̂1 = P̂⊤
1 AP̂1.

Proof. Here we assume by default that the summation over t sums from t0 + 1 to t0 + k. Since M1

is a stationary point of L, for any ∆ in the neighbourhood of O, we have

0 ≤ L(M1 +∆)− L(M1) =
∑
t

∥ŷ1,t+1 −M1ŷ1,t −∆ŷ1,t∥2 −
∑
t

∥ŷ1,t+1 −M1ŷ1,t∥2

=
∑
t

⟨∆ŷ1,t, ŷ1,t+1 −M1ŷ1,t⟩+O(∥∆∥2)

=
∑
t

tr
(
ŷ⊤1,t∆

⊤(ŷ1,t+1 −Aŷ1,t)
)
+O(∥∆∥2)

=
∑
t

tr
(
∆⊤(ŷ1,t+1 −M1ŷ1,t)ŷ

⊤
1,t

)
+O(∥∆∥2)

= tr

(
∆⊤

∑
t

(ŷ1,t+1 −M1ŷ1,t)ŷ
⊤
1,t

)
+O(∥∆∥2).

Since it always holds for any ∆, we must have∑
t

(ŷ1,t+1 −M1ŷ1,t)ŷ
⊤
1,t ⇔ M1

∑
t

ŷ1,tŷ
⊤
1,t =

∑
t

ŷ1,t+1ŷ
⊤
1,t.
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Plugging in ŷ1,t = P̂⊤
1 xt and ŷ1,t+1 = P̂⊤

1 Axt, we further have

M1P̂
⊤
1 XP̂1 = M1

∑
t

P̂⊤
1 xtx

⊤
t P̂1 =

∑
t

P̂⊤
1 Axtx

⊤
t P̂1 = P̂⊤

1 AXP̂1,

where X :=
∑

t xtx
⊤
t = DD⊤. Since the columns of P̂1 form an orthonormal basis of Êu, for any

x ∈ Êu, P̂⊤
1 x is the coordinate of x under that basis. The columns of D are linearly independent,

so the columns of P̂⊤
1 D are also linearly independent, which further shows

rank(P̂⊤
1 XP̂1) = rank

(
(P̂⊤

1 D)(P̂⊤
1 D)⊤

)
= rank(P̂⊤

1 D) = k.

Therefore, P̂⊤
1 XP̂1 is invertible, and M1 is explicitly given by

M1 = (P̂⊤
1 AXP̂1)(P̂

⊤
1 XP̂1)

−1.

Note that Π̂1 = P̂1P̂
⊤
1 is the projector onto subspace col(D), we must have

P̂1P̂
⊤
1 X = (Π̂1D)D⊤ = DD⊤ = X,

which yields

M1 = (P̂⊤
1 A(P̂1P̂

⊤
1 X)P̂1)(P̂

⊤
1 XP̂1)

−1 = (P̂⊤
1 AP̂1)(P̂

⊤
1 XP̂1)(P̂

⊤
1 XP̂1)

−1 = P̂⊤
1 AP̂1.

This completes the proof of Lemma B.1.

It might help understanding to note that, when P̂1 = P1, for any xt, xt+1 ∈ Eu we have

P⊤
1 Axt = yt+1 = M1yt = M1P

⊤
1 xt,

which requires P⊤
1 A = M1P

⊤
1 , or equivalently, M1 = P⊤

1 AP1 (recall P⊤
1 P1 = I).

C Transformation of B with Arbitrary Columns

Throughout the remainder of this paper, we regard B as an n-by-k matrix (i.e., m = k). In this
section, we show that other cases can be handled in a similar way via proper transformations. Intu-
itively, since the system is assumed to be strongly controllable, we can “pack” every d consecutive
steps together as a new state to obtain a system that is “fully-actuated” in the unstable subspace (i.e.,
the unstable subspace is controlled by at least k linearly independent inputs).

More specifically, for any integer d, the transformation is given by

x̃t =


xtd

xtd+1

...
x(t+1)d−1

 , ũt =


utd−1

utd

...
u(t+1)d−2

 ,

Ã =


0 A

. . .
...

0 Ad−1

Ad

 , B̃ =


B
AB B

...
...

. . .
Ad−1B Ad−2B · · · B

 ,

and the dynamics of the transformed system is given by

x̃t+1 = Ãx̃t + B̃ũt.

If B̃ contains more than k linearly independent columns, we shall simply select k of them, and pad
0 to the unselected entries of the control input ũt.

Assumptions in the transformed system. It is evident that |λ̃i| = |λi|d (i = 1, · · · , n) (denote
by λ̃i the ith eigenvector of Ã). Therefore, the instability index of Ã is still k, and the transformed
system still satisfies Assumption 4.1, as well as |λ1|2|λk+1| < |λk|, if the original system do.

The following proposition shows that Assumption 4.3 (i.e., c-effective controllability within unstable
subspace) of the original system implies Assumption 4.3′ (i.e., (ν, σ)-strong controllability) of the
transformed system, so that the transformation preserves all assumptions. To facilitate the proof, we
first introduce a lemma on the smallest singular value of block matrices.

18



Lemma C.1. For any row-block matrix C := [A B] such that A ∈ Rr×a, B ∈ Rr×b with a+b ≤ r,
we have σmin(A) ≥ σmin(C).

Proof. Since C is “tall”, its smallest (non-trivial) singular value can be equivalently given by
σmin(C) = min

v∈Ra+b

∥v∥=1

∥Cv∥.

Similar results hold for A and B. Consequently,
σmin(C) = min

v∈Ra+b

∥v∥=1

∥Cv∥ = min
v1∈Ra,v2∈Rb

∥v1∥2+∥v2∥2=1

∥Av1 +Bv2∥ ≤ ∥Av∗1∥ = σmin(A),

where v∗1 ∈ argminv1∈Ra,∥v1∥=1 ∥Av1∥. This completes the proof.

Proposition C.1. If the original system is (ν, σ)-strongly controllable, then after the transformation
stated above, the transformed system satisfies Assumption 4.3′ with d ≤ k.

Proof. It can be directly verified that, in the transformed system, matrix R in the Eu ⊕ Es decom-
position becomes (possible non-zero blocks are marked by ∗)

R̃ =


∗

. . .
∗

R

 ,

and therefore R̃1 = [0 · · · 0 R1]. Since R1A = N1R1, we further have

R̃1B̃ = [R1A
d−1B R1A

d−2B · · · R1B] = [Nd−1
1 R1B Nd−2

1 R1B · · · R1B],

which is exactly the d-step controllability matrix of the k-dimensional LTI system (N1, R1B).
Therefore, it only suffices to establish strong controllability of (N1, R1B).

It is evident that similar transform of dynamical matrices preserve strong controllability. Therefore,
the system (N,RB) = (Q−1AQ,Q−1B) is also (ν, σ)-strongly controllable by assumption. By
definition, this indicates lower-bounded smallest singular value of its ν-step controllability matrix

Cν = [Nν−1RB Nν−2RB · · · RB] =

[
Nν−1

1 R1B Nν−2
1 R1B · · · R1B

Nν−1
2 R2B Nν−2

2 R2B · · · R2B

]
.

Consequently, the top k rows of Cν , which is exactly the ν-step controllability matrix of (N1, R1B),
also has smallest singular value lower bounded by σ due to Lemma C.1 (note that singular values
are preserved by transpose). Therefore, (N1, R1B) is also (ν1, σ)-strongly controllable. Since the
sub-system is only k-dimensional, we can always select ν1 ≤ k. Taking d = ν1, and the proof is
finished (note that the constant c in Assumption 4.3′ can be simply taken as c̃ := σ/∥B̃∥).

Performance of the transformed system. We also have to show that the transformation only mildly
degrades the performance bounds established in Theorems 4.1 and 4.2. Recall that the instance-
specific constants involved here are |λ̃i|, ∥Ã∥, ∥B̃∥, c̃, ξ, κe(A), and ξε(·).

It is clear that |λ̃i| = |λi|d, and ∥Ã∥, ∥B̃∥ are upper bounded by

∥Ã∥ ≤

√√√√ d∑
i=1

∥Ai∥2 = ∥Ad∥O(d), ∥B̃∥ ≤ ∥B∥

√√√√ d∑
i=1

(d− i)∥Ai∥2 = ∥Ad∥∥B∥O(d).

Also note that 1/c̃ = ∥B̃∥/σ. Therefore, |λ̃i|, ∥Ã∥, ∥B̃∥ and c̃ are only lifted to a power of d after
transformation. Meanwhile, since Ã “inherits” all eigenvectors from A (in the last n dimensions),
while the eigenvectors corresponding to the first (d − 1)n zero eigenvalues can be padded to be
orthonormal, ξ and κe(A) remain unchanged. Finally, since Ãt = diag(0, · · · ,0, Atd) for any
t > 1, the Gelfand constants ξε(·) with respect to subspaces of col(A) also remain unchanged.

As a conclusion, all constants are either unchanged or only lifted to a power of d ≤ k ≪ n. Since
the constants always appear in logarithmic additive terms (see Appendices F and G for details), the
performance bounds will remain the same in terms of orders with regard to k and n.
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D Proof of Lemma 5.3

Lemma 5.3 is actually a direct corollary of the following lemma, for which we first need to define
gapi(A), the (bipartite)spectral gap around λi with respect to A, namely

gapi(A) :=

{
minλj∈λ(A2) |λi − λj | λi ∈ λ(A1)

minλj∈λ(A1) |λi − λj | λi ∈ λ(A2)
,

where λ(A) denotes the spectrum of A.

Lemma D.1. For 2-by-2 block matrices A and E in the form

A =

[
A1 0
0 A2

]
, E =

[
0 E12

E21 0

]
,

we have

|λi(A+ E)− λi(A)| ≤ κe(A)κe(A+ E)

gapi(A)
∥E12∥∥E21∥.

Here κe(A) is the condition number of the matrix consisting of A’s eigenvectors as columns.

Proof. The proof of the lemma can be found in existing literature like [54].

Proof of Lemma 5.3. Lemma D.1 basically guarantees that every eigenvalue of A + E is within
a distance of O(∥E12∥∥E21∥) from some eigenvalue of A. Hence, by defining χ(A + E) as the
maximum coefficient, namely

χ(A+ E) :=
κe(A)κe(A+ E)

mini{gapi(A)}
,

we shall guarantee |ρ(A+ E)− ρ(A)| ≤ χ(A+ E)∥E12∥∥E21∥.

E Proof of Theorem 5.1 and its Corollary

The main idea of this proof is to diagonalize A and write the open-loop system dynamics using the
basis formed by the eigenvectors of A. Then, we provide an explicit expression for Π̂1 and Π1,
based on which we can bound the error. To further derive a bound for ∥P̂1 − P1∥, one only needs
to notice that norms are preserved under orthonormal coordinate transformations, so it only suffices
to find a specific pair of bases of E⊥

u and Es that are close to each other — and the pair of bases
formed by principle vectors (see Appendix A) is exactly what we want. This leads to Corollary 5.2
that is repeatedly used in subsequent proofs.

Without loss of generality, we shall write all matrices in the basis formed by unit eigenvectors
{w1, · · · , wn} of A. Otherwise, let W = [w1 · · · wn], and perform change-of-coordinate by setting
D̃ := W−1DW , Π̃1 := W−1Π1W , which further gives

˜̂
Π1 = D̃(D̃⊤D̃)−1D̃⊤ = (W−1DW )(W−1D⊤DW )−1(W−1D⊤W ) = W−1Π̂1W.

Note that ∥W−1Π̂1W −W−1Π1W∥ ≤ ∥W∥∥W−1∥∥Π̂1 − Π1∥, where the upper bound is only
magnified by a constant factor of κe(A) = ∥W∥∥W−1∥ that is completely determined by A. There-

fore, it is largely equivalent to consider (D̃, Π̃1,
˜̂
Π1) instead of (D,Π1, Π̂1).

Note that the matrix D = [xt0+1 · · · xt0+k] can be written as

D =


d1 λ1d1 · · · λk−1

1 d1
d2 λ2d2 · · · λk−1

2 d2
...

...
. . .

...
dn λndn · · · λk−1

n dn

 ,

where xt0+1 =: [d1, · · · , dn]⊤. We first present a lemma characterizing some well-known properties
of Vandermonde matrices that we need in the proof.
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Lemma E.1. Given a Vandermonde matrix in variables x1, · · · , xn of order n

V := Vn(x1, · · · , xn) =


1 1 · · · 1
x1 x2 · · · xn

...
...

. . .
...

xn−1
1 xn−1

2 · · · xn−1
n

 ,

its determinant is given by

det(V ) =
∑
π

(−1)sgn(π)x0
π(i1)

x1
π(i2)

· · ·xn−1
π(in)

=
∏
j<ℓ

(xℓ − xj), (8)

and its (u, v)-cofactor is given by

cofu,v(V ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1 1 · · · 1
...

. . .
...

...
. . .

...
xu−2
1 · · · xu−2

v−1 xu−2
v+1 · · · xu−2

n
xu
1 · · · xu

v−1 xu
v+1 · · · xu

n
...

. . .
...

...
. . .

...
xn−1
1 · · · xn−1

v−1 xn−1
v+1 · · · xn−1

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σu,v

∏
j<ℓ̸=v

(xℓ − xj). (9)

Here coefficients σu,v are given by σu,v := sn−u(x1, · · · , xv−1, xv+1, · · · , xn), where function sm
is defined by sm(y1, · · · , yn) :=

∑
i1<···<im

yi1 · · · yim .

Proof of Lemma E.1. The proof of (8) can be found in any standard linear algebra textbook, while
the proof of (9) can be found in [55].

It is evident that the entries in D display a similar pattern as those of a Vandermonde matrix. Based
on this observation, we shall further derive the explicit form of Π̂1 as in the next lemma.

Lemma E.2. The projector Π̂1 = D(D⊤D)−1D⊤ has explicit form

(Π̂1)uv =

∑
i2<···<ik
∀j:ij ̸=u,v

αu,i2,··· ,ikαv,i2,··· ,ik

∑
i1<···<ik

α2
i1,··· ,ik

,

where the summand αi1,··· ,ik (with ordered subscript) is defined as

αi1,··· ,ik :=
∏
j

dij
∏
j<ℓ

(λiℓ − λij ).

Proof of Lemma E.2. We start by deriving the explicit form of (D⊤D)−1. Note that the determinant
(which is also the denominator in the lemma) is given by

det(D⊤D) =
∑

i1,··· ,ik

∣∣∣∣∣∣∣∣∣
λ0
i1
d2i1 λ1

i2
d2i2 · · · λk−1

ik
d2ik

λ1
i1
d2i1 λ2

i2
d2i2 · · · λk

ik
d2ik

...
...

. . .
...

λk−1
i1

d2i1 λk
i2
d2i2 · · · λ2k−2

ik
d2ik

∣∣∣∣∣∣∣∣∣
=

∑
i1,··· ,ik

d2i1 · · · d
2
ik
λ0
i1λ

1
i2 · · ·λ

k−1
ik

∏
j<ℓ

(λiℓ − λij )

=
∑

i1<···<ik

d2i1 · · · d
2
ik

∏
j<ℓ

(λiℓ − λij )
∑
π

(−1)sgn(π)λ0
π(j1)

λ1
π(j2)

· · ·λk−1
π(jk)

=
∑

i1<···<ik

d2i1 · · · d
2
ik

∏
j<ℓ

(λiℓ − λij )
2

=
∑

i1<···<ik

α2
i1,··· ,ik ,

21



and the (u, v)-cofactor cofu,v(D⊤D) is given by

cofu,v(D
⊤D) = (−1)u+v

∑
i1,··· ,ik−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ0
i1
d2i1 · · · λv−2

iv−1
d2iv−1

λv
iv
d2iv · · · λk−1

ik−1
d2ik−1

...
. . .

...
...

. . .
...

λu−2
i1

d2i1 · · · λu+v−4
iv−1

d2iv−1
λu+v−2
iv

d2iv · · · λu+k−3
ik−1

d2ik−1

λu
i1
d2i1 · · · λu+v−2

iv−1
d2iv−1

λu+v
iv

d2iv · · · λu+k−1
ik−1

d2ik−1

...
. . .

...
...

. . .
...

λk−1
i1

d2i1 · · · λk+v−3
iu+v−2

d2iv−1
λk+v−1
iv

d2iv · · · λ2k−2
ik−1

d2ik−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)u+v

∑
i1,··· ,ik−1

d2i1 · · · d
2
ik−1

λ0
i1 · · ·λ

v−2
iv−1

λv
iv · · ·λ

k−1
ik−1

sk−u

∏
j<ℓ

(λiℓ − λij )

= (−1)u+v
∑

i1<···<ik−1

sk−u · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )·∑
π

(−1)sgn(π)λ0
π(i1)

· · ·λv−2
π(iv−1)

λv
π(iv)

· · ·λk−1
π(ik−1)

= (−1)u+v
∑

i1<···<ik−1

sk−usk−v · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )
2,

where sk−u(λi1 , · · · , λik−1
) is abbreviated to sk−u.

Note that symmetry of D⊤D guarantees cofv,u(D⊤D) = cofu,v(D
⊤D), so we have

(D⊤D)−1
u,v =

cofv,u(D
⊤D)

det(D⊤D)
=

cofu,v(D
⊤D)

det(D⊤D)
.

And eventually we shall derive that

P̂u,v =
∑
p,q

Du,p(D
⊤D)−1

p,qD
⊤
q,v

=
1

det(D⊤D)

∑
p,q

Du,pDv,q cofu,v(D
⊤D)

=
1

det(D⊤D)

∑
p,q

λp−1
u duλ

q−1
v dv · (−1)p+q

∑
i1<···<ik−1

sk−psk−q · d2i1 · · · d
2
ik−1

∏
j<ℓ

(λiℓ − λij )
2

=
1

det(D⊤D)

∑
i1<···<ik−1

dudvd
2
i1 · · · d

2
ik−1

∏
j<ℓ

(λiℓ − λij )
2

k∑
p=1

(−1)pλp−1
u sk−p

k∑
q=1

(−1)qλq−1
v sk−q

=
1

det(D⊤D)

∑
i1<···<ik−1

dudi1 · · · dik−1

∏
j<ℓ

(λiℓ − λij )
∏
ℓ

(λiℓ − λu)·

dvdi1 · · · dik−1

∏
j<ℓ

(λiℓ − λij )
∏
ℓ

(λiℓ − λv)

=
1

det(D⊤D)

∑
i2<···<ik
∀j:ij ̸=u,v

αu,i2,··· ,ikαv,i2,··· ,ik ,

which is in exact the same form as stated in the lemma.

Now we shall go back to the proof of the main result of this section.

Proof of Theorem 5.1. Recall that di = λt0+1
i x0,i. For the clarity of notations, let

θi1,i2,··· ,ik :=
αi1,i2,··· ,ik
α1,2,··· ,k

,
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and it is evident that |θi1,i2,··· ,ik | = 1 only if (i1, i2, · · · , ik) is a permutation of (1, 2, · · · , k). For
any other (i1, i2, · · · , ik), by the definition in Lemma E.2 we have

|θi1,i2,··· ,ik | ≤ ci1,i2,··· ,ik · r
∑

j 1ij>kt0 ≤ c · rt0 ,

where r = |λk+1|
|λk| and c := max

i1,··· ,ik
{ci1,i2,··· ,ik}. Therefore, since there are

(
n
k

)
different k-tuples

(i1, · · · , ik) such that i1 < · · · < ik, we have∑
i1<···<ik

θ2i1,··· ,ik − θ21,··· ,k < c
(
n
k

)
r2t0 .

Now we can bound the entries in Π̂1. For any ε > 0, we shall select t0 such that c
(
n
k

)
r2t0 < ε

n2 ,
where the denominator is always bounded by

1 ≤
∑

i1<···<ik

θ2i1,··· ,ik ≤ 1 +
ε

n2
.

For the nominator, note that for each δ there are fewer entries with exponent δ in the nominator than
in the denominator, so we can bound the denominator as∣∣∣∣∣∣∣∣

∑
i2<···<ik
∀j:ij ̸=u,v

θu,i2,··· ,ikθv,i2,··· ,ik

∣∣∣∣∣∣∣∣ ≤
{
c
(
n
k

)
r2t0 + 1 u = v ≤ k

c
(
n
k

)
r2t0 otherwise

.

Therefore, when u = v ≤ k, we have
∑

i2<···<ik
∀j:ij ̸=u

θ2u,i2,··· ,ik ≥ 1, which shows

(Π̂1)uv ≥
(
1 +

ε

n2

)−1

≥ 1− ε

n2

(Π̂1)uv ≤ 1 +
ε

n2

 ⇒
∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ ≤ ε

n2
;

for all other cases, the nominator cannot sum over a permutation of (1, · · · , k), which gives∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ = ∣∣∣(Π̂1)uv

∣∣∣ ≤ ε

n2
.

Therefore, the overall estimation error is bounded by

∥Π̂1 −Π1∥ ≤
∑
u,v

∣∣∣(Π̂1)uv − (Π1)uv

∣∣∣ ≤ ε.

Recall that the bound is subject to a change-of-basis transformation, and in the general scenario
where the eigenvectors of A are not mutually orthogonal, the original prediction error bound should
be multiplied by κe(A). Therefore, to achieve error threshold ε for predictions on Πi, it is required
that c

(
n
k

)
r2t0 < ε

κe(A)n2 , or equivalently, by Stirling’s Formula,

t0 >
log κe(A) + log cn2

ε + log
(
n
k

)
2 log 1

r

= O

k log n− log ε+ log κe(A)

2 log |λk|
|λk+1|

 . (10)

This completes the proof.

Proof of Corollary 5.2. We first construct a specific pair of orthonormal bases (P ∗
1 , P̂

∗
1 ) that satisfy

the corollary. To start with, take an arbitrary initial pair of orthonormal basis (P ◦
1 , P̂

◦
1 ), and consider

the SVD (P ◦
1 )

⊤P̂ ◦
1 = UΣV ⊤, which is equivalent to (P ◦

1U)⊤(P̂ ◦
1 V ) = Σ. Note that the columns

of P ◦
1U = [w1 · · ·wk] and P̂ ◦

1 V = [ŵ1 · · · ŵk] form orthonormal bases of col(Π1) and col(Π̂1),
respectively; furthermore, these bases project onto each other accordingly by subscripts, namely

Π1ŵi = σiwi, Π̂1wi = σiŵi.

Now we set P ∗
1 := P ◦

1U and P̂ ∗
1 := P̂ ◦

1 V . Note that

|1− σi| = ∥(Π̂1 −Π1)ŵi∥ < ε,
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which shows, by properties of projection matrix Π1,

∥wi − ŵi∥ =
√
∥wi −Π1ŵi∥2 + ∥Π1ŵi − ŵi∥2 =

√
|1− σi|2 + ∥(Π̂1 −Π1)ŵi∥2 <

√
2ε,

and thus

∥P ∗
1 − P̂ ∗

1 ∥ = max
∥z∥=1

∥(P ∗
1 − P̂ ∗

1 )z∥ = max
∥z∥=1

∥∥∥∥∥∑
i

zi(wi − ŵi)

∥∥∥∥∥ ≤ √k · √2ε.
To further generalize the proposition to any arbitrary P̂1, we only have to note that there exists an
orthonormal matrix T that maps the basis P̂ ∗

1 to P̂1 = P̂ ∗
1 T . Now take P1 = P ∗

1 T , and we have

∥P̂1 − P1∥ = ∥(P̂ ∗
1 − P ∗

1 )T∥ = ∥P̂ ∗
1 − P ∗

1 ∥ <
√
2kε.

As for the estimation error bound for M1, we can directly write

∥P⊤
1 AP1 − P̂⊤

1 AP̂1∥ ≤ ∥P⊤
1 AP1 − P⊤

1 AP̂1∥+ ∥P⊤
1 AP̂1 − P̂⊤

1 AP̂1∥
≤ ∥A∥∥P1 − P̂1∥+ ∥A∥∥P1 − P̂1∥
< 2∥A∥δ,

This completes the proof of the corollary.

Recall that we are allowed to take any orthonormal basis P1 for Eu. Hence we shall always assume
by default that P1 in the proofs are selected as shown in the proof above.

We finish this section with simple but frequently-used bounds on ∥P̂⊤
1 P1∥ and ∥P̂⊤

1 P2∥. These
factors represent an additional error introduced by using the inaccurate projector P̂1.

Proposition E.1. Under the premises of Corollary 5.2, ∥Ik − P̂⊤
1 P1∥ < δ, ∥P̂⊤

1 P2∥ < δ.

Proof. Note that P⊤
1 P1 = Ik and P⊤

1 P2 = O, it is evident that

∥Ik − P̂⊤
1 P1∥ = ∥(P1 − P̂1)

⊤P1∥ < δ,

∥P̂⊤
1 P2∥ = ∥(P̂1 − P1)

⊤P2∥ = ∥P̂1 − P1∥ < δ.

This finishes the proof.

F Proof of Theorem 4.2

We first consider a warm-up case where A is symmetric, which provides some intuition for the
general case. In this case, the eigenvectors of A are mutually orthogonal, which guarantees E⊥

u = Es

(i.e., they are 0-close to each other) and thus ∆ = 0. This allows us to select τ = 1, ω = 0 and
α = 1, and the closed-loop dynamical matrix simplifies to

L̂1 =

[
M1 + P⊤

1 BK̂1P̂
⊤
1 P1 P⊤

1 BK̂1P̂
⊤
1 P2

P⊤
2 BK̂1P̂

⊤
1 P1 M2 + P⊤

2 BK̂1P̂
⊤
1 P2

]
. (11)

The norm of the top-left block is in the order of O(δ) based on the estimation error bound (see
Theorem F.1) ∥B̂1−B1∥ = O(

√
kδ), which characterizes how well the controller can eliminate the

unstable component. The spectrum of the bottom-right block can be viewed as a perturbation (note
that ∥P̂⊤

1 P2∥ = O(δ) is small by Proposition E.1) to a stable matrix M2 (recall ρ(M2) = |λk+1|),
which should also be stable as long as δ is small enough. Meanwhile, the top-right block is also
approximately zero, since only projection error contributes to the top-right block (again ∥P̂⊤

1 P2∥ =
O(δ)). The above observations together show that L̂1 is in the order of

L̂1 =

[
O(δ) O(δ)
O(1) |λk+1|+O(δ)

]
, (12)

which is almost lower-triangular. Therefore, we can apply the block perturbation bound to bound
the spectrum of L̂1.

We start by showing the estimation error bound for B1, which is straight-forward since ∆ = 0. Note
that the upper bound of the norm of our controller K̂1 appears as a natural corollary of it.
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Proposition F.1. Under the premises of Theorem 4.2, ∥B̂1 −B1∥ < 4∥A∥
√
kδ.

Proof. Note that the column vector bi has estimation error bound

∥bi − b̂i∥ =
1

∥xti∥

∥∥∥(P⊤
1 xti+1 −M1P

⊤
1 xti

)
−
(
P̂⊤
1 xti+1 − M̂1P̂

⊤
1 xti

)∥∥∥
≤ 1

∥xti∥

(
∥(P⊤

1 − P̂⊤
1 )Axti∥+ ∥(M1P

⊤
1 − M̂1P̂

⊤
1 )xti∥

)
≤ ∥P⊤

1 − P̂⊤
1 ∥∥A∥+ ∥M1P

⊤
1 −M1P̂

⊤
1 ∥+ ∥M1P̂

⊤
1 − M̂1P̂

⊤
1 ∥

< ∥A∥δ + ∥M1∥∥P⊤
1 − P̂⊤

1 ∥+ ∥M1 − M̂1∥
< ∥A∥δ + ∥A∥δ + 2∥A∥δ = 4∥A∥δ,

where we repeatedly apply Corollary 5.2 and the fact that ∥M1∥ ≤ ∥A∥. Then, to bound the error
of the whole matrix, we simply apply the definition

∥B̂1 −B1∥ = max
∥u∥=1

∥(B̂1 −B1)u∥ ≤ max
∥u∥=1

k∑
i=1

|ui|∥b̂i − bi∥ < 4∥A∥
√
kδ.

This completes the proof.

Corollary F.1. Under the premises of Theorem 4.2, when (13) holds, ∥K̂1∥ < 2∥A∥
c∥B∥ .

Proof. By Proposition F.1, it is evident that

σmin(B̂1) ≥ σmin(B1)− ∥B̂1 −B1∥ > (c− 4∥A∥
√
kδ)∥B∥ > c

2
∥B∥,

where the last inequality requires

δ <
c

8∥A∥
√
k
. (13)

Recall that K̂1 = B̂−1
1 M̂1, and note that ∥B̂−1

1 ∥ ≤ 1
σmin(B̂1)

, so we have

∥K̂1∥ = ∥B̂−1
1 M̂1∥ ≤

∥P̂⊤
1 AP̂1∥

σmin(B̂1)
<

2∥A∥
c∥B∥

.

This completes the proof.

Recall that to apply Lemma 5.3, we need a bound on the spectral radii of diagonal blocks. The
top-left block has already been eliminated to approximately 0 by the design of K̂1, but the bottom-
right block needs some extra work — although M2 is known to be stable, the inaccurate projection
introduces an extra error that perturbs the spectrum. To bound the perturbed spectral radius, we will
apply the following perturbation bound known as Bauer-Fike Theorem.

Lemma F.2 (Bauer-Fike). Suppose A ∈ Rn×n is diagonalizable, then for any E ∈ Rn×n, we have

|ρ(A)− ρ(A+ E)| ≤ max
λ̂∈λ(A+E)

min
λ∈λ(A)

|λ− λ̂| ≤ κe(A)∥E∥,

where κe(A) is the condition number of the matrix consisting of A’s eigenvectors as columns, and
λ(A) denotes the spectrum of A.

Proof. The proof is well-known and can be found in, e.g., [56].

Now we are ready to prove the main theorem for any symmetric dynamical matrix A.

Proof of Theorem 4.2. With τ = 1, the controlled dynamics under estimated controller K̂1 becomes

L̂1 =

[
M1 + P⊤

1 BK̂1P̂
⊤
1 P1 P⊤

1 BK̂1P̂
⊤
1 P2

P⊤
2 BK̂1P̂

⊤
1 P1 M2 + P⊤

2 BK̂1P̂
⊤
1 P2

]
.
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We first guarantee that the diagonal blocks are stable. For the top-left block,

∥M1 + P⊤
1 BK̂1∥ = ∥M1 −B1B̂

−1
1 M̂1P̂

⊤
1 P1∥

≤ ∥M1 − M̂1∥+ ∥M̂1 −B1B̂
−1
1 M̂1∥+ ∥B1B̂

−1
1 M̂1(Ik − P̂⊤

1 P1)∥
≤ ∥M1 − M̂1∥+ ∥B̂1 −B1∥∥K̂1∥+ ∥B∥∥K̂1∥∥Ik − P̂⊤

1 P1∥

< 2∥A∥δ + 8∥A∥2
√
k

c∥B∥
δ +

2∥A∥
c

δ (14)

=
2
(
4
√
k∥A∥+ (c+ 1)∥B∥

)
∥A∥

c∥B∥
δ,

where in (14) we apply Corollary 5.2, Corollary F.1, and Proposition E.1. Meanwhile, for the
bottom-right block, note that the norm of the error term is bounded by

∥P⊤
2 BK̂1P̂

⊤
1 P2∥ ≤ ∥B∥∥B̂−1

1 ∥∥M̂1∥∥P̂⊤
1 P2∥ ≤

2∥A∥
c

δ.

Hence, by Lemma F.2, the spectral radius of the bottom-right block is bounded by

ρ(M2 + P⊤
2 BK̂1P̂

⊤
1 P2) ≤ ρ(M2) +

2
cκe(M2)∥A∥δ < 1,

where we require (recall that ρ(M2) = |λk+1|)

δ <
c(1− |λk+1|)
2κe(M2)∥A∥

. (15)

To apply the lemma, it only suffices to bound the spectral norms of off-diagonal blocks. Note that
the top-right block is bounded by

∥P⊤
1 BK̂1P̂

⊤
1 P2∥ ≤ ∥B∥∥K̂1∥∥P̂⊤

1 P2∥ <
2∥A∥
c

δ,

and the bottom-left block is bounded by

∥P⊤
2 BK̂1P̂

⊤
1 P1∥ ≤ ∥B∥∥K̂1∥ ≤

2∥A∥
c

.

Now, by Lemma 5.3, we can guarantee that

ρ(L̂1) ≤ max

{
2
(
4
√
k∥A∥+ 2(c+ 1)∥B∥

)
∥A∥

c∥B∥
δ, |λk+1|+ ∥B∥∥K̂1∥δ

}
+

4∥A∥2χ(L̂1)

c2
δ < 1,

where we require

δ < min

 1

2
(
4
√
k∥A∥+2(c+1)∥B∥

)
∥A∥

c∥B∥ + 4∥A∥2χ(L̂1)
c2

,
1− |λk+1|

2∥A∥
c + 4∥A∥2χ(L̂1)

c2

 . (16)

So far, we shall recollect all the constraints we need on δ (see (13), (15) and (16)), i.e.,

δ < min

 c

8∥A∥
√
k
,
c(1− |λk+1|)
2κe(M2)∥A∥

,
1− |λk+1|

2∥A∥
c + 4∥A∥2χ(L̂1)

c2

,
1

2
(
4
√
k∥A∥+2(c+1)∥B∥

)
∥A∥

c∥B∥ + 4∥A∥2χ(L̂1)
c2

 ,

which can be simplified (but weakened) to

δ <
c2(1− |λk+1|)

16
√
kκe(M2)∥A∥(∥A∥+ ∥B∥)χ(L̂1)

= O(k−1/2). (17)

We shall rewrite the bound equivalently in terms of t0 (recall (10) in Appendix E) as

t0 >
log(cn2

(
n
k

)
)− log c2(1−|λk+1|)

16
√
2kκe(M2)∥A∥(∥A∥+∥B∥)χ(L̂1)

2 log |λk|
|λk+1|

= O

 k log n

log |λk|
|λk+1|

 , (18)

since κe(A) = 1. This completes the proof of Theorem 4.2.
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G Proof of the Main Theorem

For the general case, the analysis becomes more challenging for two reasons: on the one hand, we
have to apply τ -hop control with τ possibly larger than 1, which potentially increases the norm of
Bτ and K̂1; on the other hand, the top-right corner will no longer be O(δ) with a non-zero ∆ (in
fact, ∆τ is in the order of |λ1|τ that grows exponentially with respect to τ ). To settle these issues,
we first introduce two key observations on bounds of major factors:

(1) For an arbitrary matrix X , although ∥X∥ might be significantly larger than ρ(X), we always
have ∥Xt∥ = O(ρ(X)t) when t is large enough. This is formally proven as Gelfand’s Formula
(see Lemma G.1), and helps to establish bounds like ∥M1∥ = O(|λ1|τ ), ∥M2∥ = O(|λk+1|τ ),
∥∆τ∥ = O(|λ1|τ ), ∥P⊤

2 Aτ−1∥ = O(|λk+1|τ ), and ∥M̂τ
1 −Mτ

1 ∥ = O(|λ1|τδ).
(2) When the system runs in open loop for a long period (specifically, for ω time steps), eventually

we will see the unstable component expanding and the stable component shrinking, and con-
sequently ∥P⊤

2 Aωx∥
∥Aωx∥ = O(|λk|−ω). This cancels out the exponentially exploding ∥∆τ∥, and

helps to establish the estimation bound ∥B̂τ −Bτ∥ = O(|λ1|τδ).

With these in hand, we are ready to upper bound the norms of the blocks in L̂τ :

(1) The top-left and bottom-right blocks: similar to the warm-up case, only to note that dynamical
matrices are lifted to their τ th power, and thus ∥B̂τ −Bτ∥ carries an additional factor of |λ1|τ .

(2) The bottom-left block: P⊤
2 Aτ−1 contributes an O(|λk+1|τ ) factor that decays exponentially,

while K̂1 contributes an O(|λ1|τ ) factor that explodes exponentially. The overall bound is in
the order of O(|λ1λk+1/λk|τ ), and decays with respect to τ if |λ1||λk+1|/|λk| < 1.

(3) The top-right block: the first term is in the order of O(|λ1|τ ), and the second term is in the
order of O(|λ1λk+1/λk|τδ). This block is in the order of O(|λ1|τ ) when δ is small enough.

Therefore, the closed-loop dynamical matrix is actually in the order of

L̂τ =

[
O(|λ1|2τδ) O

(
|λ1|τ + |λ1λk+1/λk|τδ

)
O(|λ1λk+1/λk|τ ) O

(
|λk+1|τ + |λ1λk+1|τδ

) ] . (19)

Finally, by Lemma 5.3, asymptotic stability is guaranteed when |λ1|2|λk+1| < |λk| (i.e., the norm
of the bottom-left block decays faster than the norm of the top-right block grows), in which case we
can set τ to be some constant determined by A and B, and δ in the order of O(|λ1|−2τ ).

Technically, we would like to bound the spectral radius of the matrix

L̂τ =

[
Mτ

1 + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P1 ∆τ + P⊤

1 Aτ−1BK̂1P̂
⊤
1 P2

P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1 Mτ

2 + P⊤
2 Aτ−1BK̂1P̂

⊤
1 P2.

]
using Lemma 5.3. The proof is split into two major building blocks: on the one hand, we introduce
the well-known Gelfand’s Formula to bound matrices appearing with exponents; on the other hand,
we establish the estimation error bound for Bτ (parallel to Lemma F.1) and proceed to bound ∥K̂1∥,
for which we rely on the instability results shown in Section G.2. Finally, a combination of these
building blocks naturally establishes the main theorem.

G.1 Gelfand’s Formula

In this section, we will show norm bounds for factors that contain matrix exponents. It is natural to
apply the well-known Gelfand’s Formula as stated below.
Lemma G.1 (Gelfand’s Formula). For any square matrix X , we have

ρ(X) = lim
t→∞

∥Xt∥1/t. (20)

In other words, for any ε > 0, there exists a constant ζε(X) such that

σmax(X
t) = ∥Xt∥ ≤ ζε(X)(ρ(X) + ε)t. (21)

Further, if X is invertible, let λmin(X) denote the eigenvalue of X with minimum modulus, then

σmin(X
t) ≥ 1

ζε(X−1)

(
|λmin(X)|

1 + ε|λmin(X)|

)t

. (22)
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Proof. The proof of (20) can be easily found in existing literature (e.g., [57], Corollary 5.6.14), and
(21) follows by the definition of limits. For (22), note that

σmin(X
t) =

1

σmax((X−1)t)
≥ 1

ζε(X−1)(ρ(X−1) + ε)t
=

1

ζε(X−1)

(
|λmin(X)|

1 + ε|λmin(X)|

)t

,

where we apply σmin(X
t) = σmax((X

−1)t)−1 and ρ(X−1) = |λmin(X)|−1.

It is evident that ρ(A) = ρ(M1) = ρ(N1) = |λ1|, λmin(M1) = λmin(N1) = |λk| and ρ(M2) =
ρ(N2) = |λk+1| (recall that M1 and M2 inherits the unstable and stable eigenvalues, respectively).
Therefore, we can use Gelfand’s Formula to bound the relevant factors appearing in L̂τ .

Proposition G.1. Under the premises of Theorem 4.1, the following results hold for any t ∈ N:

(1) ∥Bt∥ ≤ ζε1(A)(|λ1|+ ε1)
t−1∥B∥;

(2) ∥P⊤
2 At∥ ≤ ζε2(M2)(|λk+1|+ ε2)

t;

(3) ∥∆t∥ ≤ C∆(|λ1|+ ε1)
t, where C∆ = ζε1(M1)ζε2(M2)

(2−ξ)
√
2ξ∥A∥

1−ξ
2|λk+1|

|λ1|+ε1−|λk+1|−ε2
.

Here (and below) ε1 and ε2 are selected to be sufficiently small constants (see (47)).

Proof. (1) This is a direct corollary of Gelfand’s Formula, since

∥Bt∥ = ∥P⊤
1 At−1B∥ ≤ ∥At−1∥∥B∥ ≤ ζε1(A)(|λ1|+ ε1)

t−1∥B∥.

(2) It only suffices to recall ρ(M2) = |λk+1|, and note that

P⊤
2 At = P⊤

2 PM tP−1 = [0 In−k]M
tP⊤ = M t

2P
⊤
2 .

Hence by Gelfand’s Formula we have ∥P⊤
2 At∥ = ∥M t

2∥ ≤ ζε2(M2)(|λk+1|+ ε2)
t.

(3) This is a direct corollary of Lemma A.1(4) and Gelfand’s Formula, since

∥∆t∥ =

∥∥∥∥∥∑
i

M i
1∆M t−1−i

2

∥∥∥∥∥ ≤ ∥∆∥∑
i

∥M i
1∥∥M t−1−i

2 ∥

≤ ζε1(M1)ζε2(M2)
(2− ξ)

√
2ξ∥A∥

1− ξ

∑
i

(ε1 + |λ1|)i(|λk+1|+ ε2)
t−1−i

= C∆(|λ1|+ ε1)
t.

This finishes the proof of the proposition.

Proposition G.2. Under the premises of Theorem 4.1,

∥M̂τ
1 −Mτ

1 ∥ < 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ.

Proof. Recall that Corollary 5.2 gives ∥M1 − M̂1∥ < 2∥A∥δ. Meanwhile, by Gelfand’s Formula,

∥M t
1∥ = ∥P⊤AtP∥ ≤ ∥At∥ ≤ ζε1(A)(|λ1|+ ε1)

t,

∥M̂ t
1∥ = ∥P̂⊤AtP̂∥ ≤ ∥At∥ ≤ ζε1(A)(|λ1|+ ε1)

t.

Then we have the following bound by telescoping

∥Mτ
1 − M̂τ

1 ∥ =

∥∥∥∥∥
τ∑

i=1

(
M i

1M̂
τ−i
1 −M i−1

1 M̂τ−i+1
1

)∥∥∥∥∥
≤

τ∑
i=1

∥M i−1
1 ∥∥M̂τ−i

1 ∥∥M1 − M̂1∥

< τ · ζε1(A)2(|λ1|+ ε1)
τ−1 · 2∥A∥δ

= 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ.

This finishes the proof.
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Corollary G.2. Under the premises of Theorem 4.1, when δ < 1
τ ,

∥M̂τ
1 ∥ <

(
ζε1(M1)(|λ1|+ ε1) + 2∥A∥ζε1(A)

)
(|λ1|+ ε1)

τ−1.

Proof. A combination of Gelfand’s Formula and Proposition G.2 yields

∥M̂τ
1 ∥ ≤ ∥Mτ

1 ∥+ ∥M̂τ
1 −Mτ

1 ∥
≤ ζε1(M1)(|λ1|+ ε1)

τ + 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ

<
(
ζε1(M1)(|λ1|+ ε1) + 2τ∥A∥ζε1(A)δ

)
(|λ1|+ ε1)

τ−1,

where the last inequality requires δ < 1
τ . This completes the proof.

G.2 Instability of the Unstable Component

We have been referring to Es (and approximately, E⊥
u ) as “stable”, and Eu as “unstable”. This leads

us to think that the unstable component will constitute an increasing proportion of the state as the
system evolves with zero control input. However, in some cases it might happen that the proportion
of unstable component does not increase within the first few time steps, although eventually it will
explode. This motivates us to formally characterize such instability of the unstable component.

In this section, we aim to establish a fundamental property of Aω (for large enough ω, of course)
that it “almost surely” increases the norm of the state. By “almost surely” we mean that the initial
state should have non-negligible unstable component, which happens with probability 1 − ε when
we uniformly sample the initial state from the surface of unit hyper-sphere in Rn.

Throughout this section, we use γ to denote the ratio of the unstable component over the stable
component within some state x (i.e., ∥R1x∥

∥R2x∥ ). Note that

x = Πux+Πsx = Q1R1x+Q2R2x,

where Q1, Q2 are orthonormal. Hence

∥R1x∥ − ∥R2x∥ ≤ ∥x∥ ≤ ∥R1x∥+ ∥R2x∥.

As a consequence, when ∥R1x∥
∥R2x∥ > γ > 1, we also know that

∥R1x∥
∥x∥

≥ ∥R1x∥
∥R1x∥+ ∥R2x∥

>
γ

γ + 1
,
∥R2x∥
∥x∥

≤ ∥R2x∥
∥R1x∥ − ∥R2x∥

<
1

γ − 1
.

The following results are presented to fit in the framework of an inductive proof. We first establish
the inductive step, where Proposition G.3 shows that the unstable component eventually becomes
dominant with a non-negligible initial γ, and Proposition G.4 shows that the unstable component will
still constitute a non-negligible part after a control input of mild magnitude is injected. Meanwhile,
Proposition G.5 shows that the initial unstable component is non-negligible with large probability.

Proposition G.3. Given a dynamical matrix A and some constant γ > 0, for any state x such that
∥R1x∥
∥R2x∥ > γ, for any ω ∈ N, we have

∥R1A
ωx∥

∥R2Aωx∥
> γω := Cγ

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

,

where Cγ := 1
(1+ 1

γ )ζε3 (N
−1
1 )ζε2 (N2)∥R2∥

is a constant related to γ. Specifically, for any γ+ > 0,

there exists a constant ω0(γ, γ+) = O(log γ+

γ ), such that for any ω > ω0(γ, γ+),
∥R1x∥
∥R2x∥ > γ+.

Proof. Recall that R1A
ω = Nω

1 R1 and R2A
ω = Nω

2 R2. By Gelfand’s Formula we have

∥R1A
ωx∥

∥R2Aωx∥
=
∥Nω

1 R1x∥
∥Nω

2 R2x∥
≥ σmin(N

ω
1 )∥R1x∥

∥Nω
2 ∥∥R2∥∥x∥

>
σmin(N

ω
1 )

(1 + 1
γ )∥N

ω
2 ∥∥R2∥

≥
(
|λk|/(1 + ε3|λk|)

)ω
(1 + 1

γ )ζε3(N
−1
1 )ζε2(N2)(|λk+1|+ ε2)ω∥R2∥
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=
1

(1 + 1
γ )ζε3(N

−1
1 )ζε2(N2)∥R2∥

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

.

Therefore, we shall take

ω0(γ, γ+) =
log γ+/Cγ

log(|λk|)/
(
(1 + ε3|λk|)(|λk+1|+ ε2)

) = O

(
log

γ+
γ

)
,

and the proof is completed.

Corollary G.3. Under the premises of Proposition G.3, for any ω > ω0(γ, γ+),

∥P⊤
1 Aωx∥
∥Aωx∥

> 1− 2

γω − 1
,
∥P⊤

2 Aωx∥
∥Aωx∥

<
1

γω − 1
.

Proof. Note that we have decomposition x = Πux +Π1Πsx +Π2Πsx, where ∥Πux∥ = ∥R1x∥
and ∥Πsx∥ = ∥R2x∥. Hence, for any ω > ω0(γ, γ+), we can show that

∥P⊤
1 Aωx∥
∥Aωx∥

=
∥ΠuA

ωx+Π1ΠsA
ωx∥

∥Aωx∥

≥ ∥ΠuA
ωx∥ − ∥Π1ΠsA

ωx∥
∥Aωx∥

≥ ∥R1A
ωx∥ − ∥R2A

ωx∥
∥Aωx∥

>
γω

γω + 1
− 1

γω − 1
> 1− 2

γω − 1
,

and similarly,
∥P⊤

2 Aωx∥
∥Aωx∥

=
∥Π2ΠsA

ωx∥
∥Aωx∥

≤ ∥ΠsA
ωx∥

∥Aωx∥
<

1

γω − 1
.

The proof is completed.

Proposition G.4. Given dynamical matrices A,B and constants γ > 0, γ+ > 1, for any state x

such that ∥R1x∥
∥R2x∥ > γ+, suppose we feed a control input ∥u∥ ≤ α∥x∥ and observe the next state

x′ = Ax+Bu, where α satisfies

α <

γ+

γ++1σmin(M1)− γ
γ+−1

1
1−ξ∥A∥

(1 +
√
2ξ

1−ξ + γ
1−ξ )∥B∥

. (23)

Then we can guarantee that ∥R1x
′∥

∥R2x′∥ > γ.

Proof. The proposition can be shown by direct calculation. Let z = Rx = [z⊤1 , z⊤2 ]⊤. Recall that

Rx′ = z′ =

[
N1z1 +R1Bu
N2z2 +R2Bu

]
,

and note that ∥z1∥
∥x∥ > γ+

γ++1 , ∥z2∥
∥x∥ < 1

γ+−1 under the assumptions, so we have

∥R1x
′∥

∥R2x′∥
=
∥N1z1 +R1Bu∥
∥N2z2 +R2Bu∥

≥ ∥N1z1∥ − ∥R1Bu∥
∥N2z2∥+ ∥R2Bu∥

≥ σmin(N1)∥z1∥ − ∥R1B∥∥u∥
∥N2∥∥z2∥+ ∥R2B∥∥u∥

≥
σmin(N1)

γ+

γ++1∥x∥ − α∥R1∥∥B∥∥x∥
∥N2∥ 1

γ+−1∥x∥+ α∥R2∥∥B∥∥x∥

≥
σmin(M1)

γ+

γ++1∥x∥ − α(1 +
√
2ξ

1−ξ )∥B∥∥x∥
1

1−ξ∥A∥
1

γ+−1∥x∥+ α 1
1−ξ∥B∥∥x∥

> γ,

where we apply Lemma A.1 and the convention of taking N1 = M1.
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Proposition G.5. Suppose a state x is sampled uniformly randomly from the unit hyper-sphere
surface Bn ⊂ Rn, then for any constant γ < min

{
1
2 ,

1√
2/(σmin(R1)k)+1

}
, we have

Prx∼U(Bn)

[
∥R1x∥
∥R2x∥

> γ

]
> 1− θ(γ),

where θ(γ) = 8
√
2

B( 1
2 ,

n−1
2 )
√

σmin(R1)
γ = O(γ) is a constant bounded linearly by γ.

Proof. Note that

∥R1x∥ >
γ

1− γ
∥x∥ ⇒ ∥R2x∥ < ∥x∥+ ∥R1x∥ <

1

1− γ
∥x∥ ⇒ ∥R1x∥

∥R2x∥
> γ.

so we only have to show that Prx∼U(Bn)

[
∥R1x∥ ≤ γ

1−γ

]
< θ(γ). Now let R⊤

1 R1 = S⊤DS be the

eigen-decomposition of R⊤
1 R1, where S is selected to be orthonormal such that

D = diag(d1, · · · , dk, 0, · · · , 0).

Note that the vector y = Sx =: [y1, · · · , yn] also obeys a uniform distribution over Bn, so we have

Pr
[
∥R1x∥ ≤ γ

1−γ

]
= Pr

[
x⊤R⊤

1 R1x ≤ ( γ
1−γ )

2
]
= Pr

[
y⊤Dy ≤ ( γ

1−γ )
2
]

≤ Pr
[
diy

2
i ≤ 1

k (
γ

1−γ )
2, ∀i = 1, . . . , k

]
≤

k∑
i=1

Pr
[
y2i ≤ 1

dik
( γ
1−γ )

2
]
.

It suffices to bound the probability Pry∼U(B)

[
y2i ≤ η

]
. Note that y can be obtained by first sampling

a Gaussian random vector z ∼ N (0, In), and then normalize it to get y = z
∥z∥ . Hence

Pry∼U(Bn)

[
y2i ≤ η

]
= Prz∼N (0,In)

[
z2i ≤ η∥z∥2

]
= Prz∼N (0,In)

[
z2i∑
j ̸=i z

2
j

≤ η

1− η

]
,

where w :=
z2
i∑

j ̸=i z
2
j

is known to obey an F-distribution w ∼ F(1, n− 1). The c.d.f. of w is known

to be Iw/(w+n−1)(
1
2 ,

n−1
2 ), where I denotes the regularized incomplete Beta function. Note that

Iw/(w+n−1)

(
1

2
,
n− 1

2

)
=

2w1/2

(n− 1)1/2B( 12 ,
n−1
2 )
− nw3/2

3(n− 1)3/2B( 12 ,
n−1
2 )

+O(n5/2),

it can be shown that Iw/(w+n−1)

(
1
2 ,

n−1
2

)
< 4

√
w√

n−1B( 1
2 ,

n−1
2 )

. Hence

Pry∼U(Bn)

[
y2i ≤ η

]
= Prz∼N (0,In)

[
z2i∑
j ̸=i z

2
j

≤ η

1− η

]
<

4
√

η
1−η

√
n− 1B( 12 ,

n−1
2 )

,

which further gives

Pr
[
∥R1x∥ ≤ γ

1−γ

]
<

k∑
i=1

4
√

2
dik

( γ
1−γ )

2

√
n− 1B( 12 ,

n−1
2 )

<
8
√
2

B( 12 ,
n−1
2 )
√

σmin(R1)
γ = O(γ)

where we require γ < min
{

1
2 ,

1√
2/(σmin(R1)k)+1

}
.

Combining the previous three propositions, we have shown in an inductive way that the algorithm

guarantees ∥P⊤
2 xti

∥
∥xti

∥ is constantly upper bounded at each time step ti (i = 1, · · · , k), which is critical
to the estimation error bound of Bτ . This is concluded as the following lemma.
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Lemma G.4. Under the premises of Theorem 4.1, for any constants ω, γ such that ω < t0 and
γ < min

{
1
2 ,

1√
2/(σmin(R1)k)+1

}
, the algorithm guarantees

∥P⊤
2 xti∥
∥xti∥

<
1

γω − 1
, ∀i = 1, · · · , k

with probability 1− θ(γ) over the initialization of x0 on the unit hyper-sphere surface Bn, where

γω := Cγ

(
|λk|

(1 + ε3|λk|)(|λk+1|+ ε2)

)ω

.

Proof. We proceed by showing that ∥R1xti
∥

∥R2xti
∥ > γω for i = 1, · · · , k in an inductive way.

For the base case, it is guaranteed by Proposition G.5 that x0 satisfies ∥R1x0∥
∥R2x0∥ > γ with probability

1− θ(γ), and Proposition G.3 further guarantees ∥R1xt1
∥

∥R2xt1∥
> γω . Here we require t0 > ω.

For the inductive step, suppose we have shown ∥R1xti
∥

∥R2xti
∥ > γω . Since ∥uti∥ = α∥xti∥, we have

∥R1xti+1∥
∥R2xti+1∥ > γ by Proposition G.4, and again Proposition G.3 guarantees

∥R1xti+1
∥

∥R2xti+1
∥ > γω .

Now it only suffices to apply Corollary G.3 to complete the proof.

G.3 Estimation Error of Bτ

Proposition G.6. Under the premises of Theorem 4.1 and Lemma G.4, when (29) holds,

∥B̂τ −Bτ∥ < CB(|λ1|+ ε1)
τ−1δ,

where CB :=
2
√
kζε1 (A)2

(
(2τ+2)∥A∥+∥B∥

)
α .

Proof. This is parallel to Lemma F.1. Note that we have to subtract an additional term (induced by
non-zero ∆τ in Mτ ) to calculate the actual bi, so we have

∥bi − b̂i∥ =
1

α∥xti∥

∥∥∥(P⊤
1 xti+τ −Mτ

1 P
⊤
1 xti −∆τP

⊤
2 xti

)
−
(
P̂⊤
1 xti+τ − M̂τ

1 P̂
⊤
1 xti

)∥∥∥
≤ 1

α∥xti∥

(
∥(P1 − P̂1)

⊤(Aτxti +Bτuti)∥+ ∥Mτ
1 P

⊤
1 xti − M̂τ

1 P̂
⊤
1 xti∥+ ∥∆τP

⊤
2 xti∥

)
<

1

α

(
ζε1(A)2(|λ1|+ ε1)

τ−1
(
(2τ + 2)∥A∥+ ∥B∥

)
δ + δ

)
.

Here the first term is bounded by

∥(P1 − P̂1)
⊤(Aτxti +Bτuti)∥ ≤ ∥P1 − P̂1∥(∥Aτ∥+ ∥Aτ−1B∥)∥xti∥

< ∥xti∥ζε1(A)(|λ1|+ ε1)
τ−1(∥A∥+ ∥B∥)δ,

where in the last inequality we apply Corollary 5.2; the second term is bounded by

∥Mτ
1 P

⊤
1 xti − M̂τ

1 P̂
⊤
1 xti∥ ≤ (∥Mτ

1 (P
⊤
1 − P̂⊤

1 )∥+ ∥(Mτ
1 − M̂τ

1 )P̂
⊤
1 ∥)∥xti∥

<
(
ζε1(A)(|λ1|+ ε1)

τ−1∥A∥δ
+ 2τ∥A∥ζε1(A)2(|λ1|+ ε1)

τ−1δ
)
∥xti∥ (24)

≤ ∥xti∥ζε1(A)2(|λ1|+ ε1)
τ−1(2τ + 1)∥A∥δ, (25)

where in (24) we apply Proposition G.2, and in (25) we apply a simple fact that ζε1(A) ≥ 1; the
third term is bounded by

∥∆τ∥∥P⊤
2 xti∥

∥xti∥
≤ C∆(|λ1|+ ε1)

τ[
Cγ

(
|λk|

(1+ε3|λk|)(|λk+1|+ε2)

)ω
− 1
] (26)

<
2C∆(|λ1|+ ε1)

τ

Cγ

(
|λk|

(1+ε3|λk|)(|λk+1|+ε2)

)ω (27)
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< δ, (28)

where in (26) we apply Lemma G.4, while in (27) and (28) we require

ω > max

{
log 2/Cγ

log
(
|λk|/(1 + ε3|λk|)(|λk+1|+ ε2)

) , log(2C∆)/(Cγδ) + τ log(|λ1|+ ε1)

log
(
|λk|/(1 + ε3|λk|)(|λk+1|+ ε2)

)} .

(29)

Finally, to bound the error of the whole matrix, we simply apply the definition

∥B̂τ −Bτ∥ = max
∥u∥=1

∥(B̂τ −Bτ )u∥ ≤ max
∥u∥=1

k∑
i=1

|ui|∥b̂i − bi∥

<

√
k

α

(
ζε1(A)2(|λ1|+ ε1)

τ−1
(
(2τ + 2)∥A∥+ ∥B∥

)
+ 1
)
δ

<
2
√
kζε1(A)2

(
(2τ + 2)∥A∥+ ∥B∥

)
α

(|λ1|+ ε1)
τ−1δ.

This completes the proof.

Corollary G.5. Under the premises of Theorem 4.1 and Lemma G.4, when (29), (30) and (31) hold,

σmin(B̂τ ) >
c∥B∥

4ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

.

Proof. We apply the Eu ⊕ Es-decomposition. Note that

Bτ = P⊤
1 Aτ−1B = P⊤

1 (Q1N
τ−1
1 R1 +Q2N

τ−1
2 R2)B = Nτ−1

1 R1B + P⊤
1 Q2N

τ−1
2 R2B,

so by Gelfand’s Formula and Lemma A.1 we have

σmin(Bτ ) = σmin(N
τ−1
1 R1B + P⊤

1 Q2N
τ−1
2 R2B)

≥ σmin(N
τ−1
1 )σmin(R1B)− ∥P⊤

1 Q2∥∥Nτ−1
2 ∥∥R2∥∥B∥

≥ c∥B∥
ζε3(N

−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

−
√
2ξζε2(N2)∥B∥

1− ξ
(|λk+1|+ ε2)

τ−1

>
c∥B∥

2ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

where the last inequality requires
√
2ξζε2(N2)ζε3(N

−1
1 )

c(1− ξ)

(
(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

<
1

2
,

or equivalently,

τ >
log c(1−ξ)

2
√
2ξζε2 (N2)ζε3 (N

−1
1 )

log (|λk+1|+ε2)(1+ε3|λk|)
|λk|

+ 1. (30)

Therefore, using Proposition G.6, σmin(B̂τ ) is lower bounded by

σmin(B̂τ ) ≥ σmin(Bτ )− ∥B̂τ −Bτ∥

>
c∥B∥

2ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

− CB(|λ1|+ ε1)
τ−1δ

>
c∥B∥

4ζε3(N
−1
1 )

(
|λk|

1 + ε3|λk|

)τ−1

,

where the last inequality requires

δ <
c∥B∥

4ζε3(N
−1
1 )CB

(
|λk|

(1 + ε3|λk|)(|λ1|+ ε1)

)τ−1

. (31)

This completes the proof.

33



Finally, using the above bounds, we can easily upper bound the norm of our controller K̂1.

Proposition G.7. Under the premises of Theorem 4.1, when (29), (30), (31) and δ < 1
τ hold,

∥K̂1∥ < CK

(
(|λ1|+ ε1)(1 + ε3|λk|)

|λk|

)τ−1

,

where CK :=
4ζε3 (N

−1
1 )
(
ζε1 (M1)(|λ1|+ε1)+2∥A∥ζε1 (A)

)
c∥B∥ .

Proof. Recall that the controller is constructed as K̂1 = B̂−1
τ M̂τ

1 P̂
⊤
1 , so we have

∥K̂1∥ ≤ ∥B̂−1
τ ∥∥M̂τ

1 ∥ =
∥M̂τ

1 ∥
σmin(B̂τ )

,

and the bound is merely a combination of Corollary G.2 and Corollary G.5 whenever δ < 1
τ .

G.4 Proof of Theorem 4.1

Now we are ready to combine the above building blocks and present the complete proof of Theorem
4.1. Note that, with all the bounds established above, the proof structure parallels that of Theorem
4.2, the special case with a symmetric dynamical matrix A.

Proof of Theorem 4.1. The proof is again based on Lemma 5.3. We first guarantee that the diagonal
blocks are stable. For the top-left block,

∥Mτ
1 + P⊤

1 Aτ−1BK̂1∥ = ∥Mτ
1 −Bτ B̂

−1
τ M̂τ

1 P̂
⊤
1 P1∥

≤ ∥Mτ
1 − M̂τ

1 ∥+ ∥(Bτ − B̂τ )B̂
−1
τ M̂τ

1 ∥+ ∥Bτ B̂
−1
τ M̂τ

1 (I − P̂⊤
1 P1)∥

≤ ∥Mτ
1 − M̂τ

1 ∥+ ∥Bτ − B̂τ∥∥K̂1∥+ ∥Bτ∥∥K̂1∥∥I − P̂⊤
1 P1∥

≤ 2τ∥A∥ζε1(A)2(|λ1|+ ε1)
τ−1δ

+ CBCK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ (32)

+ ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

< (CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

(33)

<
1

2
, (34)

where in (32) we apply Propositions G.2, G.6, G.7, and E.1; in (33) we require

1

τ

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

> 2∥A∥ζε1(A)2; (35)

and in (34) we require

δ <
1

2(CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−(τ−1)

. (36)

For the bottom-right block, it is straight-forward to see that

∥Mτ
2 + P⊤

2 Aτ−1BK̂1P̂
⊤
1 P2∥ ≤ ∥Mτ

2 ∥+ ∥P⊤
2 Aτ−1∥∥B∥∥K̂1∥∥P̂⊤

1 P2∥
≤ ζε2(M2)(|λk+1|+ ε2)

τ

+ ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

δ

< 1
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where the last inequality requires

τ >
log 1/(4ζε2(M2))

log(|λk+1|+ ε2)
, (37)

δ <
1

4ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)−(τ−1)

. (38)

Now it only suffices to bound the spectral norms of off-diagonal blocks. Note that, by applying
Proposition G.7 and Proposition G.1, the top-right block is bounded as

∥∆τ + P⊤
1 Aτ−1BK̂1P̂

⊤
1 P2∥ ≤ ∥∆τ∥+ ∥Bτ∥∥K̂1∥∥P̂⊤

1 P2∥
< C∆(|λ1|+ ε1)

τ

+ ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)τ−1

δ

< (C∆ + 1)(|λ1|+ ε1)
τ

where the last inequality requires

δ <
(|λ1|+ ε1)

2

ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−τ

; (39)

and the bottom-left block is bounded as

∥P⊤
2 Aτ−1BK̂1P̂

⊤
1 P1∥ ≤ ∥P⊤

2 Aτ−1∥∥B∥∥K̂1∥

< ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)τ−1

.

Now, by Lemma 5.3, we can guarantee that

ρ(L̂τ ) ≤
1

2
+χ(L̂τ )

(C∆ + 1)ζε2(M2)∥B∥CK

|λ1|+ ε1

(
(|λ1|+ ε1)

2(|λk+1|+ ε2)(1 + ε3|λk|)
|λk|

)τ−1

< 1,

which requires

τ >
log 2(|λ1|+ε1)

χ(L̂τ )(C∆+1)ζε2 (M2)∥B∥CK

log (|λ1|+ε1)2(|λk+1|+ε2)(1+ε3|λk|)
|λk|

. (40)

Note that the above constraint makes sense only if |λ1|2|λk+1| < |λk|.
So far, we shall recollect all the constraints we need on the parameters τ, α, δ, γ and ω. To start with,
all constraints on τ (see (30), (35), (37) and (40)) can be summarized as

τ > max

 log c(1−ξ)

2
√
2ξζε2 (N2)ζε3 (N

−1
1 )

log (|λk+1|+ε2)(1+ε3|λk|)
|λk|

+ 1,
log 1/(4ζε2(M2))

log(|λk+1|+ ε2)
,

log 2(|λ1|+ε1)

χ(L̂τ )(C∆+1)ζε2 (M2)∥B∥CK

log (|λ1|+ε1)2(|λk+1|+ε2)(1+ε3|λk|)
|λk|

,

− 1

log (|λ1|+ε1)2(1+ε3|λk|)
|λk|

W−1

− log (|λ1|+ε1)
2(1+ε3|λk|)
|λk|

2∥A∥ζε1(A)2 (|λ1|+ε1)2(1+ε3|λk|)
|λk|

 ,

where W−1 denotes the non-principle branch of the Lambert-W function. Here we utilize the fact
that, for x > 1

log a , y = ax

x is monotone increasing with inverse function x = − 1
log aW−1

(
− log a

y

)
,

which can be upper bounded by Theorem 1 in [58] as

− 1

log a
W−1

(
− log a

y

)
<

log y − log log a+
√
2(log y − log log a)

log a
<

3(log y − log log a)

log a
.

By gathering different constants, we have

τ >
log

√
ξ

1−ξ + log 1
c + logχ(L̂τ ) + 5 log ζ̄ + log ∥A∥

|λ1|−|λk+1| + Cτ

log |λk|
|λ1|2|λk+1|

= O(1), (41)
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where we define ζ̄ := max{ζε1(A), ζε2(M2), ζε2(N2), ζε3(N
−1
1 )}, and Cτ is a numerical constant.

Note that we have to guarantee the denominator to be positive, which gives rise to the additional
assumption |λ1|2|λk+1| < |λk|. Meanwhile, for any ℓ ∈ N, we shall select γ such that

γ = O(k−ℓ), γ < min

{
1

2
,

1√
2/(σmin(R1)k) + 1

}
, (42)

and select α such that (see (23), and we have already guaranteed γω > 2 in (29))

α <

2
3σmin(M1)− γ

1−ξ∥A∥

(1 +
√
2ξ

1−ξ + γ
1−ξ )∥B∥

= O(1). (43)

Now constraints on δ (see (31), (36), (38) and (39)) can be summarized as

δ < min

{
c∥B∥

4ζε3(N
−1
1 )CB

(
|λk|

(1 + ε3|λk|)(|λ1|+ ε1)

)τ−1

,

1

2(CBCK + ζε1(A)∥B∥CK + 1)

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−(τ−1)

,

1

4ζε2(M2)∥B∥CK

(
(|λ1|+ ε1)(|λk+1|+ ε2)(1 + ε3|λk|)

|λk|

)−(τ−1)

,

(|λ1|+ ε1)
2

ζε1(A)∥B∥CK

(
(|λ1|+ ε1)

2(1 + ε3|λk|)
|λk|

)−τ
}
,

which can be simplified to (Cδ is a constant collecting minor factors)

δ <
Cδαc√

kζ̄3(∥A∥+ ∥B∥)
|λ1|−2τ = O(k−1/2|λ1|−2τ ), (44)

or we can rewrite the bound equivalently in terms of t0 (recall (10) in Appendix E) as

t0 >
log(n2

(
n
k

)
) + log k + log κe(A) + 2τ log |λ1|+ 3 log ζ̄ + log(∥A∥+ ∥B∥) + log

√
2

Cδα

2 log |λk|
|λk+1|

= O

2τ log |λ1|+ k log n+ log κe(A)

log |λk|
|λk+1|

 , (45)

Finally, we select ω such that (see (29), and note that Cγ = O(γ) = O(k−ℓ))

ω > max

 log 2
Cγ

log |λk|
(1+ε3|λk|)(|λk+1|+ε2)

,
log 2C∆

Cγδ
+ τ log(|λ1|+ ε1)

log |λk|
(1+ε3|λk|)(|λk+1|+ε2)

 ,

which can be reorganized as

ω >
log 1

Cγ
+ log

√
ξ

1−ξ + 2 log ζ̄ + log ∥A∥
|λ1|−|λk+1| + log 1

δ + Cω

log |λk|
|λk+1|

= O(ℓ log k). (46)

Note that here ε1, ε2, ε3 are taken to be small enough, so that

|λk+1|+ ε2 < 1, (|λ1|+ ε1)
2(|λk+1|+ ε2) <

|λk|
1 + ε3|λk|

, ε3|λk| < 1. (47)

Also, the probability of sampling an admissible x0 is 1− θ(γ) = 1−O(k−ℓ) by the union bound.

Finally, by (41), (45) and (46), we conclude that Algorithm 1 terminates within

t0 + k(1 + ω + τ) >
1

2 log |λk|
|λk+1|

(
log(n2

(
n
k

)
)︸ ︷︷ ︸

O(k logn)

+2k log 1
Cγ︸ ︷︷ ︸

O(k log k)

+ log k

)
+ k
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+
log κe(A) + 2τ log |λ1|+ 3 log ζ̄ + log(∥A∥+ ∥B∥) + log

√
2

Cδα

2 log |λk|
|λk+1|

+
k
(
log

√
ξ

1−ξ + 2 log ζ̄ + log ∥A∥
|λ1|−|λk+1| + log 1

δ + Cω

)
log |λk|

|λk+1|

+
k
(
log

√
ξ

1−ξ + log 1
c + logχ(L̂τ ) + 5 log ζ̄ + log ∥A∥

|λ1|−|λk+1| + Cτ

)
log |λk|

|λ1|2|λk+1|

= O(k log n),

time steps, which completes the proof.

For the convenience of readers, we provide a table summarizing all constants appearing in the bound.
We would like to point out that, the performance bound here is presented with instance-specific pa-
rameters to obtain the tightest bound for each system instance. Still, if an instance-independent
bound is needed for a family of systems, where all parameters are uniformly bounded (from the cor-
rect direction), we can simply replace those parameters with their bounds in equations (41) through
(46) to obtain an instance-independent bound for that family.

Table 1: Lists of parameters and constants appearing in the bound.

(a) Algorithmic parameters (introduced in Algorithm algorithm 1).
Constant Appearance Explanation

t0 Stage 1 t0 initialization steps to separate unstable components
ω Stage 3 ω heat-up steps in each iteration of learning Bτ

α Stage 3 ∥uti∥ = α∥xti∥ to keep non-negligible unstable component
τ Stage 4 τ steps between consecutive control inputs are injected

(b) System parameters (as functions of dynamical matrices).
Constant Definition Explanation

λi Assumption 4.1 (complex) eigenvalue of A with ith largest modulus
∥A∥, ∥B∥ Notation 2-norm of dynamical matrices A and B

c
Assumption

4.3′
c-effective controllability in the unstable subspace Eu, i.e.,
σmin(R1B) > c∥B∥

ξ Definition 3.1 E⊥
u and Es are ξ-close subspaces, i.e., σmin(P

⊤
2 Q2) > 1− ξ

χ(·) Lemma D.1 perturbation constant for 2-by-2 block diagonal matrices
ζε(·) Lemma G.1 Gelfand constant for the norm of matrix exponents
κe(·) Notation condition number of the matrix with eigenvectors as columns

(c) Shorthand notations (introduced in proofs).
Constant Definition Explanation

C∆ Proposition G.1 C∆ := ζε1(M1)ζε2(M2)
(2−ξ)

√
2ξ∥A∥

1−ξ
2|λk+1|

|λ1|+ε1−|λk+1|−ε2

Cγ Proposition G.3 Cγ := 1
(1+ 1

γ )ζε3 (N
−1
1 )ζε2 (N2)∥R2∥

(γ is taken according to (42))

CB Proposition G.6 CB :=
2
√
kζε1 (A)2

(
(2τ+2)∥A∥+∥B∥

)
α

CK Proposition G.7 CK :=
4ζε3 (N

−1
1 )
(
ζε1 (M1)(|λ1|+ε1)+2∥A∥ζε1 (A)

)
c∥B∥

ζ̄ below (41) ζ̄ := max{ζε1(A), ζε2(M2), ζε2(N2), ζε3(N
−1
1 )}

Cτ , Cδ , Cω (41), (44), (46) collection of numerical constants in (41), (44), (46)

H An Illustrative Example with Additive Noise

Finally, we include an illustrative experiment that shows the performance of our LTS0 algorithm.
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Settings. We evaluate the algorithm in LTI systems with additive noise

xt+1 = Axt +But + wt, where wt
i.i.d.∼ N (0, σ2

wI).

Here σw characterizes the variance (and thus the magnitude) of the noise. The dynamical matrices
are randomly generated: A is generated based on its eigen-decomposition A = V ΛV −1, where the
eigenvalues Λ = diag(λ1, · · · , λn) are randomly generated by selecting λ1:k ∼ U(1, λmax) and
λk+1:n ∼ |λk|

|λ1|2 · U(−1, 1) (to ensure |λ1|2|λk+1| < |λk|), and the eigenvectors V = [v1, · · · , vn]
are generated by random perturbation to a random orthogonal matrix (to avoid tiny ξ); meanwhile, B
is generated by random sampling i.i.d. entries from U(0, 1). For comparability and reproducibility,
throughout the experiment we set k = 3 and use 0 as the initial random seed.

To compare the performance in different settings, 30 data points are collected for each pair of σw

and n. It is observed that our algorithm might cause numerical instability issues (e.g., cond(D⊤D)
could be large), so we simply ignore such cases and repeat until 30 data points are collected. The
parameters of the algorithm are determined in an adaptive way that minimizes the number of running
steps: we search for the minimum t0 that yields estimation error smaller than δ, search for the
minimum τ such that K = B−1

τ Mτ
1 P

⊤
1 stabilizes the system, and the ω heat-up steps in Stage 3

could be ended earlier if we already observe ∥P̂⊤
1 x∥/∥x∥ larger than a certain threshold.

Our experimental results are presented in Figure 1 below.

(a) Running steps of LTS0 (b) State norms along one trajectory

Figure 1: Experimental results. In (a), the line shows the median of running steps, and the shadow
marks the range between upper and lower quartiles (the horizontal axis is in log scale). In (b), the
trajectories of our algorithm and the naive approach are compared in a randomly-generated system
with n = 128 and σw = 0 (the vertical axis is in log scale).

Performance under different n and σw. Figure 1a shows the number of running steps of LTS0
that is needed to learn a stabilizing controller. It is evident that the number of running steps grow
almost linearly with regard to log n, which is in accordance with Theorem 4.1.

As for the effect of noise, it is observed that the algorithm needs more steps in systems with noise
than in those without noise; nevertheless, the magnitude of noise does not have much influence on
the number of running steps. This is also reasonable since the increase is mainly attributed to t0 —
it takes more initial steps to push the state close enough to Eu, such that the estimation error of P1

drops to acceptable level; however, as the Eu-component grows exponentially fast over time while
wt is i.i.d., the magnitude of noise only plays a minor role in the increase. Noise becomes negligible
in later stages due to the disproportionate magnitudes of states and noise.

Analysis on comparison of trajectories. In Figure 1b we study an exemplary trajectory of our
LTS0 algorithm, and compare it against that of the naive approach, which first identifies the sys-
tem and then designs a controller to nullify the unstable eigenvalues by standard pole-placement
method. It is evident that our algorithm needs significantly fewer steps, and thus induces far smaller
state norms, to learn a controller that effectively stabilizes the system. It is also observed that our
controller decreases state norm in a zig-zag manner, which is due to the τ -hop design our algorithm
adopts. Nevertheless, a potential drawback of our controller design is that the spectral radius of the
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controlled system is larger (since we cannot precisely nullify all unstable eigenvalues), resulting in
a slower stabilizing rate than the naive approach (compare the decreasing parts of the curves).
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