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Problem Setting
We consider a finite-horizon discrete-time online control problem with
linear time-varying (LTV) dynamics:

min
x0:T ,u0:T−1

T∑
t=1

(ft(xt) + ct(ut−1))

s.t. xt = At−1xt−1 + Bt−1ut−1 + wt−1, t = 1, . . . , T, (1)
x0 = x(0),

where xt ∈ Rn, ut ∈ Rm, and wt ∈ Rn denote the state, the control action,
and the disturbance of the system. Define the info tuple at time t as ϑt :=
(At, Bt, wt, ft+1, ct+1). The prediction model is

x0, ϑ0, ϑ1, . . . , ϑk−1, u0, x1, ϑk, u1, x1, ϑk+1, . . . .

Definition 1.The transition matrix Φ(t2, t1) ∈ Rn×n is defined as

Φ(t2, t1) :=

{
At2−1At2−2 · · ·At1 if t2 > t1
I if t2 ≤ t1

,

and the controllability matrixM(t, p) ∈ Rn×(mp) is defined as
M(t, p) := [Φ(t + p, t + 1)Bt, . . . ,Φ(t + p, t + p)Bt+p] .

Assumption 1.We assume the costs and dynamics satisfy that
1. The state costs ft and control costs ct are well-conditioned;
2. argminx ft(x) = 0 and argminu ct(u) = 0 without loss of generality;
3. ∥At∥ , ∥Bt∥ , ∥B†t∥ are bounded, and σmin (M(t, d)) ≥ σ.

Predictive Control PCk
We define ψ̃pt (x, ζ;F ) as the optimal solution to

argmin
y0:p,v0:p−1

p∑
τ=1

ft+τ(yτ) +

p∑
τ=1

ct+τ (vτ−1) + F (yk)

s.t. yτ+1 = At+τyτ + Bt+τvτ + ζτ, τ = 0, . . . , p − 1, (2)
y0 = x,

where the terminal cost F is convex, nonnegative, and satisfies F (0) = 0.
ψpt (x, ζ, z) is the optimal solution to

argmin
y0:p,v0:p−1

p∑
τ=1

ft+τ(yτ) +

p∑
τ=1

ct+τ (vτ−1)

s.t. yτ+1 = At+τyτ + Bt+τvτ + ζτ, τ = 0, . . . , p − 1, (3)
y0 = x, yp = z.

We study predictive control with prediction length k :

We show the dynamic regret
and the competitive ratio for
predictive control improve
exponentially w.r.t. prediction
length in a linear time varying
system via a new perturbation
approach.

Take a picture to
download the full paper

Perturbation Bounds

We first show a perturbation bound for the unconstrained Smoothed
Online Convex Optimization (SOCO) problem:
Theorem 1.Consider the optimal solution of the SOCO problem

ψ̂(x̂0, ŵ , x̂p) := argmin
x̂1:p−1

p−1∑
τ=1

f̂τ(x̂τ) +

p∑
τ=1

ĉτ(x̂τ, x̂τ−1, ŵτ−1)

indexed by 1, . . . , p − 1. Assume f̂τ : Rn → R is µ-strongly convex,
ĉτ : Rn × Rn × Rr → R is convex and ℓ-strongly smooth, then the impact∥∥ψ̂(x̂0, ŵ , x̂p)h − ψ̂(x̂ ′0, ŵ ′, x̂ ′p)h∥∥ can be upper bounded by

C0
(
λh−10 ∥x̂0 − x̂ ′0∥+

p−1∑
τ=0

λ
|h−τ |−1
0 ∥ŵτ − ŵ ′τ∥+ λ

p−h−1
0

∥∥x̂p − x̂ ′p∥∥ ),
where C0 = (2ℓ)/µ and λ0 = 1− 2 ·

(√
1 + (2ℓ/µ) + 1

)−1
.

By the controllability assumption and the principle of optimality, we can
reduce the LTV problem to a SOCO problem.
Theorem 2.Under Assumption 1, ψ̃ satisfies∥∥ψ̃pt (x, ζ;F )yh − ψ̃pt (x ′, ζ′;F )yh∥∥ ≤ C(λh ∥x − x ′∥+ p−1∑

τ=0

λ|h−τ | ∥ζτ − ζ′τ∥
)
,

and ∥ψpt (x, ζ, z)yh − ψ
p
t (x
′, ζ′, z ′)yh∥ is upper bounded by

C
(
λh ∥x − x ′∥+

p−1∑
τ=0

λ|h−τ | ∥ζτ − ζ′τ∥+ λp−h ∥z − z ′∥
)
.

Performance Guarantees

By Theorem 2, we can show the per-step error injection is O(λk), and the
accumulative error has the same magnitude up to a constant factor.
Theorem 3.When the prediction window k is large enough,
1. The closed-loop dynamics of PCk is input-to-state stable;
2.PCk achieves an O(λkT ) dynamic regret if ∥wt∥ ≤ D;
3.PCk achieves a 1 +O(λk) competitive ratio if F is the indicator of 0.


