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Formulation & Introduction
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Optimal Control: Formulation

Consider a Linear Time-Varying (LTV) system
T = Avxy + Biug + wy.

We want to design a controller u; = f(xp.¢, - -+ ) that minimizes
T

I (ug:r-1) = Z (filze) + cr(ue-1)).

=0
where f; is hitting cost, and c; is transition cost.
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Optimal Control: Formulation

Consider a Linear Time-Varying (LTV) system
T = Avxy + Biug + wy.

We want to design a controller u; = f(xp.¢, - -+ ) that minimizes
T

I (ug:r-1) = Z (filze) + cr(ue-1)).

=0
where f; is hitting cost, and c; is transition cost.

» The problem adopts a finite horizon of T steps.

» We allow a large family of online controllers, not restricted to

linear feedback controllers.
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Optimal Control: History and Today

» In classical optimal control theory ...
> Linear feedback controllers (u; = —Kux;) in LTI systems.
> Dynamical matrices (A, B) are known to the controller.
> Model uncertainty formulated as additive noises.
> Explicit controller design (Riccati) and optimality (HJB).
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Optimal Control: History and Today

» In classical optimal control theory ...
> Linear feedback controllers (u; = —Kux;) in LTI systems.
> Dynamical matrices (A, B) are known to the controller.
> Model uncertainty formulated as additive noises.
> Explicit controller design (Riccati) and optimality (HJB).

» In online learning setting (“control meets learning”) ...

> Controller may be optimized over an arbitrary family (K € K).
> Deal with general LTV systems and unknown dynamics.
> Adopt performance metrics in online learning context (regret,

competitive ratio, sample complexity, etc.)
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Optimal Control: Taking a Learning Lens

» Existing literature covers an interesting range of topics:
> Regret in predictive setting: [1], [2], [3], etc.
> Regret in adversarial setting: [4], [5], etc.
> Competitive ratio: [6], [7], [8] etc.
> Sample complexity: [9], [10], etc.
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> Regret in adversarial setting: [4], [5], etc.
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» However, there are also certain limitations in these results:
> Most still focus on LTI systems and/or quadratic costs.
> Use modified controller to achieve better performance.
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Optimal Control: Taking a Learning Lens

» Existing literature covers an interesting range of topics:
> Regret in predictive setting: [1], [2], [3], etc.
> Regret in adversarial setting: [4], [5], etc.
> Competitive ratio: [6], [7], [8] etc.
> Sample complexity: [9], [10], etc.
» However, there are also certain limitations in these results:
> Most still focus on LTI systems and/or quadratic costs.
> Use modified controller to achieve better performance.
» How about standard controllers in general settings?

> Go beyond LQR to LTV systems + well-conditioned costs?
> Analyze standard Model Predictive Control (MPC)?
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Model Predictive Control

At time step t, the MPC controller:
» has access to (exact) prediction of dynamics of k future steps
{197' = (ATa BT, wT?fTa C‘I‘)}f—i}%a
» observes current state x; (and past trajectory, if necessary);

> is required to output control input wu; for one step.
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Model Predictive Control

At time step t, the MPC controller:
» has access to (exact) prediction of dynamics of k future steps
{97 = (Ar, By, wy, fr, e Yo
» observes current state x; (and past trajectory, if necessary);
> is required to output control input wu; for one step.
Why do we allow exact predictions?
» That'sallwhat-we can-do-before NeurlPS deadline-
» Approximate some realistic cases (e.g., power plant control).

» Help understand the idea, but not to get stuck in details.

Y. Lin, Y. Hu, et al.
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Basically, MPC = online control with a receding horizon.
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Model Predictive Control

Basically, MPC = online control with a receding horizon.

| N Ger1 Vg2 Va3 19t+4| V15 Vire  Vipr

isolve -+ commit one step

Ut

( . ..
In each step, it solves the optimization problem

Y0:k V0tk—1 7 —

Yo = Z.

k k
BH@ G F) = argmin 3 fier () + 3 e (v,-1) + Fln)
T=1

subject to  yr = Arpr—1yr—1 + Bipr—1vr—1 + G,
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Model Predictive Control

Basically, MPC = online control with a receding horizon.
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isolve -+ commit one step

Ut Ut+1 Ut+2

( . .. )

In each step, it solves the optimization problem

k k
D, G F) = argmin S frr () + 3 crir (vrm1) + Flun)
Y0k VO:k—1 1 _q =1
subject to  yr = Arpr—1yr—1 + Bipr—1vr—1 + G,
Yo = Z.
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Model Predictive Control

Basically, MPC = online control with a receding horizon.
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isolve -+ commit one step
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( . .. )
In each step, it solves the optimization problem
k k
D, G F) = argmin S frr () + 3 crir (vrm1) + Flun)
Y0k VO:k—1 1 _q =1
subject to  yr = Arpr—1yr—1 + Bipr—1vr—1 + G,
Yo = Z.
\ J
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Model Predictive Control

Basically, MPC = online control with a receding horizon.
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Preliminaries: Performance Metrics

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022

Existing literature adopts standard online learning metrics:

» Static regret (against linear controller K*)[® 1]

Tg = Sup {J(ALG) — inf j(K)} .
20, Wo: T—1 K
» Dynamic regret (against optimal controller u*)[l' 3]
Tq 1= sup {J(ALG) — inf j(u():Tl)} .
To,Wo: T—1 Ug: 7—1
» Competitive ratio (against optimal controller u*)[6:
c:= sup { j(ALG) }
. Z0,W0: T—1 infuo;T,l j(uO:T—l) ’
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Preliminaries: Assumptions on System Model

Assumption 1. Assume f; and ¢; are well-conditioned, i.e.,
» strongly convex and strongly smooth;
> twice continuously differentiable;

» non-negative, and f;(0) = ¢;(0) = 0.

Assumption 2. Assume the dynamical matrices are bounded as
14dl < a, |[Bill < b, |BJJ| < ¥,

where B‘; denotes the Moore-Penrose pseudo-inverse of B;.
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Preliminaries: Assumption on Controllability

We make an assumption slightly stronger than controllability:

Assumption 3. The system is (d, o)-uniform controllable, i.e.,
there exists a positive constant ¢ such that

UH]iH(M(t? d)) > g, Vit = 07 Tty T—d.
Here the controllability matrix is defined as

M(t7 p) = [Q(t—"_ p,t+ 1)Bt7¢(t+ pt+ 2)Bt+17 T 7¢(t+ P+ p)BtJrF]v

where @(tg, t1) := Ay,—1A4,—2- -+ Ay, and the controllability index
d is the smallest p such that M(t, p) is of full row rank.
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Preliminaries: Optimization Problems

» Single-ended optimization problem (solved by MPCy):

k k

@GP = argmin Y fur () + 3 cvnr () + Pl

Y0:ksV0:k—1  p—1 =1
subject to  yr = Atyr—1Yr—1 + Beyr—10r—1 + (o1,

Yo = .

» Double-ended optimization problem (auxiliary):

k k
Wh(@,C, D) = argmin > fur(9) + D crrr (v1)
T=1 T=1

Y0:ksV0:k—1
subject to  yr = Atyr—1Yr—1 + Beyr—10-—1 + (-1,

Yo =, Y = Z.

March 28, 2022
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Structure of the Presentation

perturbation-based analysis single-step errors c_lo not
accumulate over time

. nearby initial states result
/ perturbation bound \ in nearby trajectories
: banded matrix inverse
/ analysis of SOCO \ implies exp-decay
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single-step errors do not

perturbation-based analysis .
accumulate over time
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Assuming Exponential-Decaying Perturbation Bound ...

» Intuitively, nearby initial states result in nearby trajectories.

> We want the trajectories that only differ in initial states
converge exponentially fast to each other, i.e.,

17 (2,G; F)y, — 98 (2, G Py |l < ONMla— 2],
197 (2.C, 2)y = VF (2, ¢, Dl < OVl — 2.

> Further, the perturbation bound can be extended to ¢ and z,
so that the right-hand side is in the form

p—1
0<Ah||x— AN+ SN = A ) :

7=0
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What Does the Perturbation Bound Imply?

Lemma 1 (stability of )

DY (2,5 Pyl < OX* [lal] + 25 sup, 1G]l
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What Does the Perturbation Bound Imply?

Lemma 1 (stability of )

DY (2,5 Pyl < OX* [lal] + 25 sup, 1G]l

Proof Sketch. Compare with a noiseless trajectory starting from

0, where the optimal trajectory is to stay at 0. Formally,

10 (2. G5 )l = |[ 8 (2, G Py, — 070,03 ),

p—1
<C (Ah lll + > AP IICT||>

7=0

2C
< OMJaf| + 7=

)\SEPIICTII-

14 /37
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What Does the Perturbation Bound Imply?

Lemma 1 (stability of )

DY (2,5 Pyl < OX* [lal] + 25 sup, (1G]

» Basically, an exponential-decaying perturbation bound implies
stability of all v-trajectories.
> Intuitively, it approaches 0, - ,0 (recall 0 is an equilibrium),

another @—trajectory, exponentially fast.
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What Does the Perturbation Bound Imply?

Lemma 1 (stability of )

DY (2,5 Pyl < OX* [lal] + 25 sup, (1G]

» Basically, an exponential-decaying perturbation bound implies
stability of all v-trajectories.
> Intuitively, it approaches 0, - ,0 (recall 0 is an equilibrium),

another @—trajectory, exponentially fast.
» A helpful corollary is that OPT ~ MPC,

> oo refers to a sufficiently long prediction window.

> = comes from the fact that OPT has no terminal cost.

> Both are stable t-trajectories, so their distance is at most
twice the constant in Lemma 1.
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What Does the Perturbation Bound Imply?

If the one-future-step error satisfies e; := ||z111 — &;2‘+1|t|| = 0(\h),
then we also have ||z; — zf|| = O(XF).
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What Does the Perturbation Bound Imply?

If the one-future-step error satisfies e, := ||z111 — %I+1|t” = 0(\h),
then we also have ||z — xf|| = O(\F).

Proof sketch. First, bound the difference ||z; — Zf||:

1
e — || < |lze — 24|l + Z 25— — T (irny
=1
t—1
< |z — II\t—l” + Z ON'|| 2y — I:—ilt—(i+1) |
=1

= 0(\M).

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022
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What Does the Perturbation Bound Imply?

If the one-future-step error satisfies e; := ||z111 — &;2‘+1|t|| = 0(\h),
then we also have ||z; — zf|| = O(XF).

Proof sketch. Next, to bound ||z} — z}||, note that by Lemma 1,

137 — 27l < @7l + a7l < 2077 [la]] +

4C
T SngCTII :

Therefore, by perturbation bound on terminal state z,

Ak * — || Ak * 4C
6 = gt < T - ] < A (2037 ol + 12 sup e

-
for any t < T — k. For the remaining part, we simply revise the algorithm

to enforce 2y = zf for t > T'— k.

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 16 /37
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How to Bound the One-Future-Step Error?

» To show e, = O(\¥), just telescope over k!

> Intuitively, incrementing k£ by 1 does not change the trajectory
much (in fact, by only O(\)), and OPT ~ MPC,.
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How to Bound the One-Future-Step Error?

» To show e; = O(\F), just telescope over k!
> Intuitively, incrementing k by 1 does not change the trajectory

much (in fact, by only O(\*)), and OPT ~ MPC.,.
.
w o —"’.'___)OMPC;C

. ’?.-"

To  (00) _(c0) (o) _(00)  (00) (00)  (c0) (co) (MPCOO
T T T o o %o o TS0 oo
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w o —"’.'___ MPC;,

T30 _.»* R
B T T
oo -7 _ -7
.-
(k) T
Lo .2~
4
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How to Bound the One-Future-Step Error?

» To show e; = O(\F), just telescope over k!
> Intuitively, incrementing k by 1 does not change the trajectory
much (in fact, by only O(\*)), and OPT ~ MPC.,.

___’.___»MPck
IS o
’,—7’
/{’
AN
B/
xo, (o) (00) _(00) _(00) _(00) (00)  (c0) _(co) (MPCW
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How to Bound the One-Future-Step Error?

» To show e, = O(\¥), just telescope over k!

> Intuitively, incrementing k£ by 1 does not change the trajectory
much (in fact, by only O(\)), and OPT ~ MPC,.

Lemma 3 (one-future-step error)

With large enough k, for any p> h>1 and t < T — p,

Tp+1
YF (@ g = 0 (@ )| <

2
20)\”_”<C>\P||xt||+—c sup ||wT||>.
1—=Xo<r<r1

Thus [|9f(ae, - )y, — 221, )yull = OON®) if [|wy]| < D.

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 17 /37
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How to Bound the One-Future-Step Error?

Proof sketch. Let D :=sup, ||w,||. It is obvious that

|28 @, G5 B, = 08 (@1, )

= (8 (21, C, Dy, — Y2 (@0 G, 2o
X PR

IN

2
20N ONP ||| + 20 p ,
1—A
where z:= ¢ (1, F),, and 2 := 9P (2, F),,, and the last
inequality is due to the stability of 1 (see Lemma 1).

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 18 /37
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How to Bound the One-Future-Step Error?

Proof sketch. Therefore, for t < T — k,

O (20,G F)yy — 0 (G F)

28 G Py = 08 (01, P

2
1<m i+ 2%.0)

< 3 [
%

20?2 4C?
= Nz +

AT — A2) ML= N2

o (o MUBLEDY ).

“AD

March 28, 2022
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Combining the Building Blocks ...

Theorem 4 (Main Theorem, informal)

For MPCy,, MPC with large enough prediction window k,
Its closed-loop dynamics of is input-to-state stable;

It achieves an O(A*T) dynamic regret if ||wy|| < D;

It achieves a 1+ O(\¥) competitive ratio if F(z) = 1440} - 00.
v

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 19/37
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Combining the Building Blocks ...

Proof sketch. To show the regret bound, note that for any > 0,

cost(MPCy) — (1 + n)cost(OPT)

T—k—1
< Z vi (@, Ty1) + V(T ks wT))

t=0

T—k—1
—(L+n) ( ATy + (@ IT))
=0
T—h— 1
= (@ wen) — (L4 )y (7, xtJrl))
=0

+ (U g(or— o) = L+ 0y i@y, 77))
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Combining the Building Blocks ...

Proof sketch. To show the regret bound, note that for any > 0,

cost(MPCy) — (1 + n)cost(OPT)

T—k—1
= Z (11 (@, wep1) = (L4 m)eg (27, 2541))
=0
+ (@ o) — (L4 n)ih (2, 27))
T—k—1
< Z Lt Itﬁxt-f-l (1 + n)L%(‘TI"ﬁ—&-l))
=0

+ (Lkak(IT—k, o) = (L4 ) (@, 7))
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Combining the Building Blocks ...

Proof sketch. To show the regret bound, note that for any > 0,

cost(MPCy) — (1 + n)cost(OPT)

T—k—1
< Y (@ ze) — L+ ) (e 27,))
=0
*‘(Lgfk($T—ka$?)“(1‘+7ﬂbguk(m?7kvm?))
T—k—1
1 Ly ) * 2
S <1+7]) . ? Z (||xt—xt|| + HiL’t_A,_l _xt-',-lH )

t=0

1\ Lo+¢ .
(e 2) B s

* Note that ¢ inherits Lipschitzness from fand c.
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Combining the Building Blocks ...

Proof sketch. To show the regret bound, note that for any > 0,

cost(MPCy) — (1 + n)cost(OPT)

1 T—k—1 ) 1 L Y/
(”n)'% 2 ||”3t_$:2+<1+77)' e

2
t=0

(1 + 117) 0 <<D+ 7/\’“(”.@05” i D))2 /\2’“T> :

To bound cost(OPT), we consider a suboptimal controller inspired by the

IN

IN

d-hop transformation (see next section), which forces the state to 0 every
d steps. In this way we can show that cost(OPT) < O(D?T + ||z]|?).
Set n = O(\¥), and we obtain the regret bound.

Y. Lin, Y. Hu, et al.

I1S, Tsinghua University March 28, 2022 20 /37
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Combining the Building Blocks ...

Proof sketch. The competitive ratio result can be shown in a similar
(but more involved) way. The major concern here is that we need to
somehow “lower bound” cost(OPT), which turns out to require a
different one-future-step bound that involves 2}, namely

<

Hl/thp(l“tv Wetpp—13 Py, — U (@0, weri i Fy,

oA (|

Tyl + OV |z — 25| + C|

mj;erJrl H) ’

On the other hand, the ISS result simply follows from

el < e — &1+ 127 -
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Perturbation Bound
[o] lelelele}

Step 1: Reduce MPC to SOCO

We basically want to remove the dynamics constraints to

make the reduced optimization problem more approachable.

ed(m0, word—1,7a)  €4(ds War2d—1, T24) €Eiv71>d(m<u—1)d, W(y—1)d:vd—1> Tvd)
¢1(21, 20, W) 22(&21!}15 1) v (v, 5%!1, Wy—1)
H (21) Fa(a3) Fom1(@0—1)
fd(lﬂlﬂd) fzd(lﬂlﬂzd) f(u—l)d(lat(vfl)d)

d
&a(Td, wa:2d—1, T24)

Uu, u, U —

uq m d+1 @ d+2 o 2d—1
cq(uq) \.«Jd+1(ud+1)de+2(Ud+2) c2d—1(u2d—1
fa(zq) fax1(@ay1)  fap2(zay2) faa(z24)
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Step 1: Reduce MPC to SOCO

For p > d, where d is the controllability index, the above
reduction satisfies the following:
The total cost of interval (t,t+ p), £ (x, ¢, 2), is convex and
Ly (p)-strongly smooth in (z,(, 2).
The trajectory of interval (t,t+ p) can be recovered by solving
a double-ended constrained optimization problem, where the

solution ¥ (x, ¢, z) is Li(p)-Lipschitz in (z,¢, 2);

March 28, 2022 23 /37
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Perturbation Bound
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Step 1: Reduce MPC to SOCO

Proof sketch. The proof is based on the following fact.

Consider an optimization problem over objective f(z, y) parametrized by
x, which is assume to be convex, L-strongly smooth in (z,y), p-strongly
convex in y, and continuously differentiable. Then

» the optimal trajectory y*(z) := argmin, f(z, y) is ﬁ—Lipschitz,'

» the optimal cost f*(z) := miny, f(z, y) is (L + %)-strong/y smooth.

4

It only suffices to note that the switching cost £V is a solution to an
unconstrained optimization problem, which can be done by “merging”

states, control inputs, and noises between consecutive decision points.

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 24 /37
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Step 2: Establish Perturbation Bound for SOCO

Lemma 7 (perturbation bound for SOCO)

Given well-conditioned }T, ¢r, the optimal solution of SOCO
p—l p
P20, 0, 5p) == argmin Y fr(3) + Y | er(Er, 1, Wr1),
Trp—1 7=1 =1
satisfies
b ao, i, ) — (i, @, )| <
-1
Co (Aé’—l 30 = &1+ 30N 1 — 2k + X 3~ 7, |> :
7=0

V.

Proof sketch. See the next section.

tters
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Step 3: Deduce Perturbation Bound for MPC

Theorem 8 (perturbation bound for MPC)

Given any (z,(, 2) and (o, (', ), for all time steps t,
198 (2, ¢; F)y, — L (@, ¢’ F)y || <

p—1
¢ (/\h lo— oIl + > APThiG — Cill)

7=0

||¢f(ﬂfa Cv Z)yh - wzztj(l‘laclv Z/)th <
p—1
c (/\h lz— [+ Y ARG — ¢l + AP |2 — Z’II) :

7=0
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Step 3: Deduce Perturbation Bound for MPC

Proof sketch. Suppose ud < h < (u+ 1)d and p = vd + r, and we shall
select the decision points as

Yo, Yds - Yu—1)ds Yhs Y(ut+2)d> " 5 Y(v—1)d> Yp>s

or equivalently v, -+, vy;,_,. Let W,_1 := (;._,.;,—1 be the noise for
SOCO, and z/AJ(xt,C,xH_p) be the optimal solution of SOCO. We know
" (g, , @1, 24 ) is convex and Lo-strongly smooth, so we have

||¢f(37,ga Z)yh ( C Z/ yh

s
<G (Ag-l lz— a1y + DA i — @y + ASTD T - zn2>

Hw 2,0, 2)y — (2, W, 2 )

7=0
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Step 3: Deduce Perturbation Bound for MPC

Proof sketch. Now we only have to “expand” within each interval:

H% %( 7Clvzl)yh
v—2
< Gy ()\gl fo m’HQ + Z/\!)uf-r\fl A ﬁ]; ’2 + /\év,l),u,1 Hzf Z/H2>
7=0

J=ir

irgp1—1
= Co ()\3_1 Hil»’—z +Z>‘|u T Z HCJ CJH2+)‘(v Do 1“ _ZH2>
C v—2 ir41—1
N, + 3 5 A= G, + A o= 2]

=0 j=ir

p—1
B C(”Hx— 7+ oA G = G+ 2 o z’“) |

T=0
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(Block-)Banded Matrix Inverse Implies Exponential Decay

Lemma 9 (block-banded matrix inverse)

Suppose A € S¥" is a positive definite matrix formed by w X w

blocks A;;j € R™™, where its singular spectrum o(A) C [ag.bo),
and A is ¢-banded (i.e., A;; =0, V|i—j > ¢/2). Suppose

D = diag(Dy, ..., D,), where D; € S™ is positive semi-definite,
and M= ((A+ D)_l)SR,§c’ where Sp, Sc C {1,...,w}.

Then we have || M|| < Cv?, where

2/q
A)—1 N
023,7:< aomnd (<) ) , d= min |i—j.

ao veond(4) +1 i€SR,jESe
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(Block-)Banded Matrix Inverse Implies Exponential Decay

Proof sketch. We first consider the case D = 0, as inspired by [12].
(1) d# 0. Write d = v¢/2 + k, where v > 0,1 < k < /2. Then
there exists a polynomial p, of degree v, where

2
) 1 (14 /cond(A) .
A~ = p(A)]| < w ( 2cond(4) ) 74 < Oy

Since p, has degree v < 24 and A is ¢-banded, the matrix p, (A) satisfies
(pv(A)); ;=0 forany i€ SR and j € Sc. We then obtain

1P = [| (A = pu(A) g o || < A7 = p(A)]| < Ov°.

(2) d=0. Clearly | P|| = || (A7), 5. | <[4 =% < C
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(Block-)Banded Matrix Inverse Implies Exponential Decay

Proof sketch. Then we reduce the general case to D = 0.

Let N:= (agI+ D) € S™, and H:= N"2(A+ D)N"2 € S™. We
can show that I < H = z—gl by bounding z" Hz. Since H is also ¢-banded
and cond(H) < Z—g = cond(A), we know from the special case that

H SR,SCH < 27;1 < 27 ;

where v = ( COHZE?H) < ~. Consequently,
I = (2t
Sr,Sc
< H aOI+ DSR 75 || SR SCH H CL0[+ DSC)?EH

< (70 ||(H7 )SR,VSOH < C’Y .
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Exponential Decay Property of SOCO

Proof sketch of Lemma 7. Recall that the objective of SOCO is

p—1 P
(a0, W, &) = argmin Y fr (@) + Y & (p, Br1, Wr-1).
Trp-1 =1 =1

Let ¢ := (%o, W, Zp) be the system parameters, iAL(:%lzp_l, é) be the
objective, and e := (e, do.p—1, €p) be a direction of perturbation.
By the first-order criterion, for any 8 € R,

0

85:1:;0—1

h(H(C + 0e), ¢ + Oe) = 0.
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Exponential Decay Property of SOCO

Proof sketch of Lemma 7. Take derivative with respect to 6 to get

——— h(h(C + Be), + Be) - —1b(C + be)

gl~

= — h(ip(C + 0e), ¢ + Oe)eg

h(ip(C + 0e), C + Oe)e,

afcp Dy

Z aw axl —h(C+0¢),C +0)d

=: R%e+ RWe, + Z K)o,

=0
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Exponential Decay Property of SOCO

Proof sketch of Lemma 7. Therefore, the derivative is given by

d - . P
—((+0e)=H! (R(O) e+ RPe, + Z K(T)éT> .

7=0

where H := 8@2.3_% h(h(C 4 e),C + Oe) is the Hessian of h(-, ¢ + fe).

Since ﬁ(-,f—i— fe) only involves correlation of adjacent variables, the
Hessian H is block-tridiagonal. Meanwhile, h can be decomposed as

IIMI

gy Ko
E”.Z'TH +ZCT xT7$T 17w‘l' 1 +Z(f7 Ir) — 5"1‘7"'2)
T=1 7=1

b1 (81:p—1,C) ho (&1:p—1,C)
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Exponential Decay Property of SOCO

Proof sketch of Lemma 7. Accordingly, we have H = H; + Hs, where
ul < Hy < (u+2¢)Iand Hy > 0. Hence we may apply Lemma 9 to get

” B+ 00| < L[] leoll + € [ (Hnpr [l

ww#mww+wwmwmmw
+ZM et | 162

-+ (plug in upper bounds)

p—1
— h—1|—1 —h—
a{www+z%'|mww w%)

7=0

IA

IN
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Exponential Decay Property of SOCO

Proof sketch of Lemma 7. Finally, we have

S(On— (¢ + e)hH = ‘ /01 % b(¢+ ee)hdoH

i

p—1
_ h—1|— —h—
< G (A{; el + YA I + A5 1|ep||).

7=0

d ~ -

IA

This finishes the proof.
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Conclusions
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Review of the Proof Structure

perturbation-based analysis single-step errors c_lo not
accumulate over time

. nearby initial states result
/ perturbation bound \ in nearby trajectories
: banded matrix inverse
/ analysis of SOCO \ implies exp-decay
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What to Be Done Next?

accumulate over time

/perturbation-based analysis\ single-step errors do not

plug in perturbation bound
new perturbation bound in new settings to obtain
performance guarantees
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What to Be Done Next?

» Prediction error.

> What if the oracle gives inexact predictions on dynamics?
» Constraint set.

> What if there are constraints on states and control inputs?
» Other standard controllers.

> Does the perturbation-based analysis framework help to

provide guarantees for other controllers?

Y. Lin, Y. Hu, et al. I1S, Tsinghua University March 28, 2022 33/37
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