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Problem Setting
We consider a noiseless LTI system

xt+1 = Axt + But,where:• xt ∈ Rn is the state, and ut ∈ Rm is the control input.• Dynamical matrices A ∈ Rn×n and B ∈ Rn×m are unknown.• The learner is allowed to learn about the system by interacting with it ona single trajectory.
– The initial state is sampled from the unit hyper-sphere surface in Rnuniformly at random.
– At each time step t , the learner is allowed to observe xt and freelydetermine ut.• The goal of the learner is to learn a stabilizing controller.We make the following assumptions on the system.

Assumption 1 (Spectral Property).A is diagonalizable with instability index k
and distinct eigenvalues λ1, · · · , λn satisfying |λ1| ≥ |λ2| ≥ · · · ≥ |λk| > 1 >
|λk+1| ≥ · · · ≥ |λn|.
Assumption 2 (Initialization). The initial state of the system is sampled
uniformly at random on the unit hyper-sphere surface in Rn.
Assumption 3 ((ν, σ)-Strong Controllability). The system is (((ν, σ)))-strongly
controllable; i.e., σmin(Cν) > σ, where Cν := [Aν−1B Aν−2B · · · AB B] is
the ν-step controllability matrix.
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Under Assumption 1, define the subspaces:• the eigenspace Ei = span(vi) for an eigen-vector vi corresponding to λi , define• the unstable subspace Eu :=⊕
i≤k Ei ;• the stable subspace Es :=⊕

i>k Ei .Suppose the unstable subspace Eu and itsorthogonal complement E⊥u are spanned by
orthonormal columns of P1 ∈ Rn×k and P2 ∈
Rn×(n−k), respectively, namely

Eu = col(P1), E
⊥
u = col(P2).Write P = [P1 P2] as a shorthand. Let Π1 := P1P⊤1 and Π2 = P2P⊤2 be the

orthogonal projectors onto Eu and E⊥u , respectively.Under such subspace decomposition, we shall also decompose A as
AP = P

[
M1 ∆
M2

]
⇔ M :=

[
M1 ∆
M2

]
= P−1AP.

• The top-left blockM1 represents the action ofA on the unstable subspace.• This is the “small part” that leads to instability which we want to eliminate.• The matrices M1 (and P1), as compared to A, is much smaller in size andthus takes much fewer samples to learn.
How to learn about the unstable subspace? A critical observation is that,when we recursively apply A to a state vector, the stable component of itwill shrink, and the unstable component will stretch. Therefore, after lettingthe system run in open loop for sufficiently many heat-up steps, the state
vector is automatically pushed to approach Eu (see the top right figure).

We propose a novel algorithm
to learn to stabilize an unknown
linear time-invariant (LTI) system
on a single trajectory. It uses
O(((k log n))) samples to stabilize a
system with instability index k ,
which is sublinear in nwhen k ≪≪≪ n.

Learn Eu === col(((P111))).

Learn dynamics (((A,B)))
“restricted” to Eu.

Stabilize the “restricted”
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System state evolution in open loop.

Algorithm Design

Algorithm 1 LTS0: Learning a τ-hop Stabilizing Controller
Stage 1: learn the unstable subspace of A.Run the system in open loop for t0 steps for initialization.Run the system in open loop for k more steps and let D ← [xt0+1 · · · xt0+k].Calculate Π̂1← D(D⊤D)−1D⊤.Calculate the top k (normalized) eigenvectors v̂1, · · · v̂k of Π̂1, and let P̂1← [v̂1 · · · v̂k].
Stage 2: approximateM111 on the unstable subspace.Solve the least squares M̂1← argminM1∈Rk×k L(M1) :=∑t0+k

t=t0+1
∥P̂⊤1 xt+1 − M̂1P̂⊤1 xt∥2.

Stage 3: restore Bτ for τ -hop control.
for i ← 1, · · · , k doLet the system run in open loop for ω time steps.Run for τ more steps with initial uti = α∥xti∥ei , where ti = t0 + k + iω + (i − 1)τ .Let B̂τ ← [b̂1 · · · b̂k], where the i th column b̂i ← 1

α∥xti∥
(
P̂⊤1 xti+τ − M̂τ1 P̂⊤1 xti

).
Stage 4: construct a τ -hop stabilizing controller K.Construct the τ-hop stabilizing controller K̂ ← −B̂−1τ M̂τ1 P̂⊤1 .
τ -hop control. The intuition of stabilizing the unstable component onlyholds when the state is close enough to the unstable subspace. Luckily,the stable component automatically vanishes over time, so we design thecontroller to eliminate the unstable component only “once in a while”.The closed-loop dynamics with the τ-hop controller can be written as
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Performance of the Algorithm
Theoretical guarantee. We show the following Main Theorem to providetheoretical performance guarantee for LTS0 in noiseless LTI systems.
Theorem 1 (Main Theorem).Given a noiseless LTI system xt+1 = Axt + But
subject to Assumptions 1, 2 and 3, and additionally |λ1|2|λk+1| < |λk|, by
running LTS0 with parameters

τ = O(1), ω = O(ℓ log k), α = O(1), t0 = O(k log n)

that terminates within t0+k(1+ω+τ) = O (k log n) time steps, the closed-loop
system is exponentially stable with probability 1−O(k−ℓ) over the initialization
of x0 for any ℓ ∈ N. Here the big-O notation only shows dependence on k and n
and hides dependency on instance-specific parameters.
Experimental results. Though for clarity of exposition our Main Theoremdoes not contain disturbances, we show by numerical experiments that ouralgorithm LTS0 can also handle disturbances quite well.

(a) Running steps of LTS0 (b) State norms along one trajectory


