On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)

Presented by: Guannan Qu

Assistant Professor of ECE, Carnegie Mellon University

Sept 29, 2022

A Lot of Interest in Learning-based Control

Learning applied to control

A Lot of Interest in Learning-based Control

no-regret control e.g. [DMM 18], [ABHKS19] [AHS19], [SF20], [SSH 20] [CK21], [CH21], [KLAAH 22] sample complexity e.g. [DMMRT18], [SMTJR18] [SR 2019]

A lot of focus on learn to control **unknown** dynamical system to achieve good **performance** (regret, competitive ratio, ...)

Learn-to-Stabilize is Equally Important

Recent literature: Faradonbeh et al. 2019, Chen and Hazan 2020, Lale et al. 2020, Perdomo et al. 2021, Tsiamis et al. 2022. Older adaptive control literature: Lai 1986, Chen and Zhang 1989, Lai and Ying 1991.

How to learn from data to stabilize the LTI system?

A Direct Attempt

Linear Time Invariant (LTI) System

$$x_{t+1} = Ax_t + Bu_t$$

One can choose u_0, u_1, \dots and observe x_0, x_1, \dots

What about use these data to learn A, B...

... and then design a stabilizing controller?

- Variants of this idea has been adopted to solve the learn-to-stabilize problem, e.g. in [Chen and Hazan 2020], [Lale et al. 2020], etc.
 - This attempt is by no means simple, and various challenges including exploration, explosive trajectory, etc., needs to be addressed properly.

A Direct Attempt

$$x_{t+1} = Ax_t + Bu_t$$

Claim: state norm $||x_t||$ and regret can reach $2^{\Theta(n)}$ (*n* is dimension of state).

• Number of state samples $\{x_t\}$ to learn A, B scales linearly in n.

It takes at least *n* state samples to obtain enough information needed to learn *A*.

A Direct Attempt

$$x_{t+1} = Ax_t + Bu_t$$

Claim: state norm $||x_t||$ and regret can reach $2^{\Theta(n)}$ (*n* is dimension of state).

• When collecting the *n* samples needed, the system can be unstable.

• The exponential regret is observed and justified in [Chen and Hazan 2020], etc.

Lower Bound

Theorem (Chen and Hazan 2020, informal version)

For any randomized algorithm, there exists a LTI instance such that the regret is lower bounded by

regret $\geq 2^{\Omega(n)}$

- Is learning the full matrix A, B really necessary for *stabilization*?
 - For example, if the system is *open-loop stable*, nothing needs to be learned!
- Are there instance-specific properties that allow us only learn partial information of *A*, *B* for stabilization?

Main Result (informal version)

The proposed algorithm takes $O(k \log n)$ samples to stabilize the system, where k is the number of unstable eigenvelues

Incurs a state norm of $2^{O(k \log n)}$ Avoids exponential blow-up $2^{O(n)}$ when $k \ll n$

Summary of our approach

- Ingredient 1: subspace decomposition
 - We show only info about a k-dim subspace is needed for stabilization,
 - where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
 - We design an algorithm using $O(k \log n)$ samples to learn the subspace.
 - This incurs a state norm $2^{O(k \log n)} \ll 2^{O(n)}$ in the regime $k \ll n$.

Summary of our approach

- Ingredient 1: subspace decomposition
 - We show only info about a k-dim subspace is needed for stabilization,
 - where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
 - We design an algorithm using O(k log n) samples to learn the subspace.
 - This incurs a state norm $2^{O(k \log n)} \ll 2^{O(n)}$ in the regime $k \ll n$.

$$x_{t+1} = Ax_t + Bu_t$$

 $\underbrace{\text{Unstable eigenvalues}}_{\text{Stable eigenvalues}} \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_{k+1}| \ge \cdots \ge |\lambda_n| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_{k+1}| \ge \cdots \ge |\lambda_n| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_{k+1}| \ge \cdots \ge |\lambda_n| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_{k+1}| \ge \cdots \ge |\lambda_n| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_k| > 1 > |\lambda_k| \ge \cdots \ge |\lambda_k| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_k| \ge \cdots \ge |\lambda_k| \\ \hline \\ \textbf{Eigenvalues of A: } |\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_k| > 1 > |\lambda_k| \ge \cdots \ge |\lambda_k|$

Stable subspace: invariant subspace of stable eigenvalues. dim = n - k, basis matrix $P_s \in \mathbb{R}^{n \times (n-k)}$.

> **Unstable subspace:** invariant subspace of unstable eigenvalues. dim = k, basis matrix $P_u \in \mathbb{R}^{n \times k}$.

For illustration, consider the two subspaces are <u>orthogonal</u>. (the non-orthogonal case will be dealt with later)

> **Stable subspace:** invariant subspace of stable eigenvalues. dim = n - k, basis matrix $P_s \in \mathbb{R}^{n \times (n-k)}$.

> > **Unstable subspace:** invariant subspace of unstable eigenvalues. dim = k, basis matrix $P_u \in \mathbb{R}^{n \times k}$.

$$\begin{bmatrix} y_{u,t+1} \\ y_{s,t+1} \end{bmatrix} = \begin{bmatrix} M_u & 0 \\ 0 & M_s \end{bmatrix} \begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix} + \begin{bmatrix} P_u^{\mathsf{T}}B \\ P_s^{\mathsf{T}}B \end{bmatrix} u_t$$

Ingredient 1: information of *k*-dim unstable subspace is sufficient for stabilization.

$$\begin{bmatrix} y_{u,t+1} \\ y_{s,t+1} \end{bmatrix} = \begin{bmatrix} M_u & 0 \\ 0 & M_s \end{bmatrix} \begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix} + \begin{bmatrix} P_u^\top B \\ P_s^\top B \end{bmatrix} u_t$$

• This is block-diagonal because the subspaces are invariant w.r.t. A, and as such

has all unstable eigenvalues of
$$A$$

$$[P_{\rm u}, P_{\rm s}]^{-1}A[P_{\rm u}, P_{\rm s}] = \begin{bmatrix} M_{\rm u} & 0\\ 0 & M_{\rm s} \end{bmatrix}$$

has all stable eigenvalues of A

$$\begin{bmatrix} y_{u,t+1} \\ y_{s,t+1} \end{bmatrix} = \begin{bmatrix} M_{u} & 0 \\ 0 & M_{s} \end{bmatrix} \begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix} + \begin{bmatrix} P_{u}^{\top}B \\ P_{s}^{\top}B \end{bmatrix} u_{t}$$

setting $u_{t} = -K_{u}y_{u,t}$
$$\begin{bmatrix} y_{u,t+1} \\ y_{s,t+1} \end{bmatrix} = \begin{bmatrix} M_{u} - P_{u}^{\top}BK_{u} & 0 \\ -P_{s}^{\top}BK_{u} & M_{s} \end{bmatrix} \begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix}$$

already a stable matrix

- *P*_u: basis of unstable subspace
- $M_{\rm u}$: transition matrix of unstable component
- $P_{u}^{\mathsf{T}}B$: projection of *B* onto unstable subspace.

already a stable matrix

Summary of our approach

- Ingredient 1: subspace decomposition
 - We show only info about a k-dim subspace is needed for stabilization,
 - where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
 - We design an algorithm using $O(k \log n)$ samples to learn the subspace.
 - This incurs a state norm $2^{O(k \log n)} \ll 2^{\Theta(n)}$ in the regime $k \ll n$.

How to Learn $P_{\rm u}$ (basis of the unstable subspace)?

Idea: Open-loop system automatically drives states to the unstable subspace.

$$\begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix} = \begin{bmatrix} M_u & 0 \\ 0 & M_s \end{bmatrix} \begin{bmatrix} y_{u,t-1} \\ y_{s,t-1} \end{bmatrix} = \begin{bmatrix} M_u^t & 0 \\ 0 & M_s^t \end{bmatrix} \begin{bmatrix} y_{u,0} \\ y_{s,0} \end{bmatrix}$$

blows up converges to 0

How to Learn $P_{\rm u}$ (basis of the unstable subspace)?

Idea: Open-loop system automatically drives states to the unstable subspace.

$$\begin{bmatrix} y_{u,t} \\ y_{s,t} \end{bmatrix} = \begin{bmatrix} M_u & 0 \\ 0 & M_s \end{bmatrix} \begin{bmatrix} y_{u,t-1} \\ y_{s,t-1} \end{bmatrix} = \begin{bmatrix} M_u^t & 0 \\ 0 & M_s^t \end{bmatrix} \begin{bmatrix} y_{u,0} \\ y_{s,0} \end{bmatrix}$$

How to Learn $P_{\rm u}$ (basis of the unstable subspace)?

How to Learn $M_{\rm u}$?

 $M_{\rm u}$ can be obtained by least squares over the projected trajectory!

How to Learn M_u ?

Stage 2 of the Algorithm: learning $M_{\rm u}$

$$\widehat{M}_{u} \leftarrow \arg\min_{\widehat{M}_{u} \in \mathbb{R}^{k \times k}} \mathcal{L}(\widehat{M}_{u}) \coloneqq \sum_{t=t_{0}+1}^{t_{0}+k} \left\| \widehat{P}_{u}^{\top} x_{t+1} - \widehat{M}_{u} \widehat{P}_{u}^{\top} x_{t} \right\|^{2}$$

This only takes O(k) samples!

Full Algorithm (Orthogonal Case)

Stage 1: learning P_u

Let the system run open-loop for a period of time $t_0 = O(k \log n)$.

Set \hat{P}_u as an orthonormal basis of the subspace spanned by $[x_{t_0+1}, ..., x_{t_0+k}]$.

Stage 2: learning $M_{\rm u}$

$$\widehat{M}_{\mathrm{u}} \leftarrow \arg\min_{\widehat{M}_{\mathrm{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}(\widehat{M}_{\mathrm{u}}) \coloneqq \sum_{t=t_0+1}^{t_0+k} \|\widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_{t+1} - \widehat{M}_{\mathrm{u}} \widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_t \|^2$$

Stage 3: learning $B_{\mathrm{u}} \coloneqq P_{\mathrm{u}}^{\mathsf{T}} B$ Run the system for k more steps with input $u_{t_0+k+i} = \alpha \|x_{t_0+k+i}\| e_i$. Let $\widehat{B}_{\mathrm{u}} = [\widehat{b}_1, \dots, \widehat{b}_k]$, where $\widehat{b}_i = \frac{1}{\alpha \|x_{t_0+k+i}\|} (\widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_{t_0+k+i+1} - \widehat{M}_{\mathrm{u}} \widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_{t_0+k+i})$.

Stage 4: design the stabilizing controller Return state feedback controller $u = -\hat{K}x$, where $\hat{K} = -\hat{B}_{u}^{-1}\hat{M}_{u}\hat{P}_{u}^{\top}$

Full Algorithm (Orthogonal Case)

Stage 1: learning P_u

Let the system run open-loop for a period of time $t_0 = O(k \log n)$.

Set \hat{P}_u as an orthonormal basis of the subspace spanned by $[x_{t_0+1}, ..., x_{t_0+k}]$.

Summary of our approach

- Ingredient 1: subspace decomposition
 - We show only info about a *k*-dim subspace is needed for stabilization.
- Ingredient 2: subspace learning
 - We design an algorithm using $O(k \log n)$ samples to learn the subspace.

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with *orthogonal* stable and unstable subspace controllability assumption and other *regularity* as Incuring a state norm of $2^{O(k \log n)}$ approach can stabilize the system with number o. Much smaller than worst-case $2^{\Theta(n)}$ when $k \ll n$.

- The big-O notation hides dependence on the following quantities:
 - $\log(\max(||A||, ||B||))$
 - $\frac{1}{\log \frac{|\lambda_k|}{|\lambda_{k+1}|}}$: larger if the gap between unstable and stable eigenvalues is smaller.
 - $\log \frac{1}{c}$: larger when the unstable subspace is less controllable (*c* is a *controllability coefficient*).

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with *orthogonal* stable and unstable subspaces, under proper *controllability* assumption and other *regularity* assumptions, the proposed approach can stabilize the system with number of samples less than

- Controllability assumption : $\sigma_{\min}(P_u^{\top}B) \ge c \|B\|$ for some c > 0.
 - Can be relaxed to the usual strong controllability assumption $\sigma_{min}(\mathcal{C}) \geq \sigma$, where \mathcal{C} is the controllability matrix.
 - But this comes at the cost of a worse sample complexity $O(k^2 \log n)$.
- Work in progress: relax the controllability assumption, yet keep the $O(k \log n)$ complexity.

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with *orthogonal* stable and unstable subspaces, under proper *controllability* assumption and other *regularity* assumptions, the proposed approach can stabilize the system with number of samples less than

- Regularity assumptions:
 - *A* is diagonalizable, and has distinct eigenvalues that are not marginally stable.
 - The initial state is sampled uniformly at random from the unit sphere.
- Work in progress: the diagonalizable and distinct eigenvalue assumptions can be relaxed, but marginally stable eigenvalue is trickier to handle.

- We have achieved a $O(k \log n)$ sample complexity and avoided the norm to exponentially blow up in n when subspaces are *orthogonal*.
- How to generalize to the general *non-orthogonal* case?

• Main Challenge: knowing P_u^{\top} alone is not enough for an *oblique* projection.

- Main Challenge: knowing P_u^{\top} alone is not enough for an *oblique* projection.
- Idea: let the system do the projection instead!
 - The open-loop system drives the state to unstable subspace after $\tau = O(1)$ steps.
 - No need to do decomposition anymore if $x_{t+\tau}$ is close to the unstable subspace.

- Main Challenge: knowing P_u^{\top} alone is not enough for an *oblique* projection.
- Idea: let the system do the projection instead!
 - The open-loop system drives the state to unstable subspace after $\tau = O(1)$ steps.
 - No need to do decomposition anymore if $x_{t+\tau}$ is close to the unstable subspace.

• Control strategy: τ -hop control

• After injecting a control input, run in open loop for $\tau - 1$ steps.

au-hop Control

This block is non-zero due to non-orthogonality.

$$\begin{bmatrix} y_{u,t+1} \\ y_{2,t+1} \end{bmatrix} = \begin{bmatrix} M_u & \Delta \\ 0 & M_2 \end{bmatrix} \begin{bmatrix} y_{u,t} \\ y_{2,t} \end{bmatrix} + \begin{bmatrix} P_u^T B \\ P_2^T B \end{bmatrix} u_t$$
setting $u_t = -K_u y_{u,t}$
and $u_{t+1} = \cdots = u_{t+\tau-1} = 0$
We use subscript "2" because it is not exactly the stable subspace.

$$\begin{bmatrix} y_{\mathrm{u},t+\tau} \\ y_{2,t+\tau} \end{bmatrix} = \begin{bmatrix} M_{\mathrm{u}}^{\tau} - P_{\mathrm{u}}^{\mathsf{T}} A^{\tau-1} B K_{\mathrm{u}} & \Delta_{\tau} \\ -P_{2}^{\mathsf{T}} A^{\tau-1} B K_{\mathrm{u}} & M_{2}^{\tau} \end{bmatrix} \begin{bmatrix} y_{\mathrm{u},t} \\ y_{2,t} \end{bmatrix}$$

au-hop Control

approximately 0 since the already a stable matrixopen-loop system doesthe projection itself

Full Algorithm (General Case)

Stage 1: learning P_u Let the system run open-loop for a period of time $t_0 = O(k \log n)$. Set \hat{P}_u as an orthonormal basis of the subspace spanned by $[x_{t_0+1}, ..., x_{t_0+k}]$.

Stage 2: learning $M_{\rm u}$

$$M_{\mathrm{u}} = \arg\min_{\widehat{M}_{\mathrm{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}(\widehat{M}_{\mathrm{u}}) \coloneqq \sum_{t=t_0+1}^{t_0+k} \left\| \widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_{t+1} - \widehat{M}_{\mathrm{u}} \widehat{P}_{\mathrm{u}}^{\mathsf{T}} x_t \right\|^2$$

Stage 3: learning $B_{\tau} = P_{u}^{T} A^{\tau-1} B$ For i = 1, ..., kLet the system run in open loop for ω time steps. Run for τ more steps with initial $u_{t_i} = \alpha ||x_{t_i}|| e_i$, where $t_i = t_0 + k + i\omega + (i - 1)\tau$. Let $\hat{B}_{\tau} = [\hat{b}_1, ..., \hat{b}_k]$ where $\hat{b}_i = \frac{1}{\alpha ||x_{t_i}||} (\hat{P}_{u}^{T} x_{t_i+\tau} - \hat{M}_{u}^{\tau} \hat{P}_{u}^{T} x_{t_i})$.

Stage 4: design the stabilizing controller Return state feedback controller $u = -\hat{K}x$, where $\hat{K} = -\hat{B}_{\tau}^{-1}\hat{M}_{u}^{\tau}\hat{P}_{u}^{\top}$

Stability Guarantee (General Case)

Main Result (general case, informal version)

For LTI systems under proper *controllability* assumption and other *regularity* assumptions, the proposed approach can stabilize the system with number of samples less than

- The big-O notation hides dependence on the following quantities:
 - $\log(\max(||A||, ||B||))$
 - $\frac{1}{\log \frac{|\lambda_k|}{|\lambda_{k+1}|}}$: larger if the gap between unstable and stable eigenvalues is smaller.
 - $\log \frac{1}{c}$: larger when the unstable subspace is less controllable (*c* is a *controllability coefficient*).
 - $\log \frac{1}{1-\xi}$: $\xi \coloneqq 1 \sigma_{\min}(P_s^\top P_2)$ measures "degree of orthogonality" of the stable/unstable subspaces $(\xi = 0 \text{ for orthogonal, and } \xi = 1 \text{ for linearly dependent}).$

Stability Guarantee (General Case)

Main Result (general case, informal version)

For LTI systems under proper *controllability* assumption and other *regularity* assumptions, the proposed approach can stabilize the system with number of samples less than

- Regularity assumptions:
 - *A* is diagonalizable, and has distinct eigenvalues that are not marginally stable.
 - The initial state is sampled uniformly at random from the unit sphere.
 - $\frac{|\lambda_1|^2 |\lambda_{k+1}|}{|\lambda_k|}$ should be small (since we want the τ -hop dynamics to be stable).

How to Handle the Noisy Case?

The open-loop system still functions as automatic projection!

How to Handle the Noisy Case?

Major take-home messages

- Learning only partial information about (A, B) is necessary for stabilization.
 - Utilize the stable/unstable subspace decomposition.
- In this way a sample complexity of $O(k \log n)$ can be achieved.
 - A novel instance-specific bound for the learn-to-stabilize problem.
 - Avoid exponential state-norm blowup in *n*.

Major take-home messages

- Learning only partial information about (A, B) is necessary for stabilization.
 - Utilize the stable/unstable subspace decomposition.
- In this way a sample complexity of $O(k \log n)$ can be achieved.
 - A novel instance-specific bound for the learn-to-stabilize problem.
 - Avoid exponential state-norm blowup in *n*.

Future directions:

- Analyze the noisy case.
- Relax regularity assumptions.
- Provide lower bounds.
- Consider output feedback systems.

Reference:

Yang Hu, Adam Wierman, Guannan Qu, "On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory", accepted to NeurIPS 2022. arXiv preprint: arXiv:2202.07187

On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)

Presented by: Guannan Qu

Assistant Professor of ECE, Carnegie Mellon University

Sept 29, 2022