On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)
Presented by: Guannan Qu
Assistant Professor of ECE, Carnegie Mellon University

A Lot of Interest in Learning-based Control

A Lot of Interest in Learning-based Control

Learn-to-Stabilize is Equally Important

Recent literature: Faradonbeh et al. 2019, Chen and Hazan 2020, Lale et al. 2020, Perdomo et al. 2021, Tsiamis et al. 2022. Older adaptive control literature: Lai 1986, Chen and Zhang 1989, Lai and Ying 1991.

Problem Setup

Here we focus on
 the noiseless case.

One can choose u_{0}, u_{1}, \ldots and observe x_{0}, x_{1}, \ldots

How to learn from data to stabilize the LTI system?

A Direct Attempt

Linear Time Invariant (LTI) System

$$
x_{t+1}=A x_{t}+B u_{t}
$$

One can choose u_{0}, u_{1}, \ldots and observe x_{0}, x_{1}, \ldots

What about use these data to learn $A, B \ldots$
... and then design a stabilizing controller?

- Variants of this idea has been adopted to solve the learn-to-stabilize problem, e.g. in [Chen and Hazan 2020], [Lale et al. 2020], etc.
- This attempt is by no means simple, and various challenges including exploration, explosive trajectory, etc., needs to be addressed properly.

A Direct Attempt

$$
x_{t+1}=A x_{t}+B u_{t}
$$

Claim: state norm $\left\|x_{t}\right\|$ and regret can reach $2^{\Theta(n)}$ (n is dimension of state).

- Number of state samples $\left\{x_{t}\right\}$ to learn A, B scales linearly in n.

It takes at least n state samples to obtain enough information needed to learn A.

A Direct Attempt

$$
x_{t+1}=A x_{t}+B u_{t}
$$

Claim: state norm $\left\|x_{t}\right\|$ and regret can reach $2^{\Theta(n)}$ (n is dimension of state).

- When collecting the n samples needed, the system can be unstable.
exponentially large state

$$
\left\|x_{t}\right\| \approx 2^{\Theta(n)}
$$

- The exponential regret is observed and justified in [Chen and Hazan 2020], etc.

Lower Bound

Theorem (Chen and Hazan 2020, informal version)

For any randomized algorithm, there exists a LTI instance such that the regret is lower bounded by

$$
\text { regret } \geq 2^{\Omega(n)}
$$

- Is learning the full matrix A, B really necessary for stabilization?
- For example, if the system is open-loop stable, nothing needs to be learned!
- Are there instance-specific properties that allow us only learn partial information of A, B for stabilization?

Main Result (informal version)

The proposed algorithm takes $O(k \log n)$ samples to stabilize the system, where k is the number of unstable eigenv ${ }^{1 \cdots n c}$

Incurs a state norm of $2^{O(k \log n)}$
Avoids exponential blow-up $2^{\Theta(n)}$ when $k \ll n$

Can we exploit instance specific properties to learn to stabilize without incurring a state norm exponentially large in n ?

Can we exploit instance specific properties to learn to stabilize without incurring a state norm exponentially large in n ?

Summary of our approach

- Ingredient 1: subspace decomposition
- We show only info about a k-dim subspace is needed for stabilization,
- where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
- We design an algorithm using $O(k \log n)$ samples to learn the subspace.
- This incurs a state norm $2^{O(k \log n)} \ll 2^{\Theta(n)}$ in the regime $k \ll n$.

Can we exploit instance specific properties to learn to stabilize without incurring a state norm exponentially large in \boldsymbol{n} ?

Summary of our approach

- Ingredient 1: subspace decomposition
- We show only info about a k-dim subspace is needed for stabilization, - where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
- We design an algorithm using $O(k \log n)$ samples to learn the subspace.
- This incurs a state norm $2^{O(k \log n)} \ll 2^{\Theta(n)}$ in the regime $k \ll n$.

Can we exploit instance specific properties to learn to stabilize without incurring a state norm exponentially large in n?

Decomposition of Stable/Unstable Subspaces

$$
x_{t+1}=A x_{t}+B u_{t}
$$

Unstable eigenvalues
Stable eigenvalues
Eigenvalues of $A:\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{k}\right|>1>\left|\lambda_{k+1}\right| \geq \cdots \geq\left|\lambda_{n}\right|$
Stable subspace: invariant subspace of stable eigenvalues.
$\operatorname{dim}=n-k$, basis matrix $P_{S} \in \mathbb{R}^{n \times(n-k)}$.

Unstable subspace: invariant subspace of unstable eigenvalues.
$\operatorname{dim}=k$, basis matrix $P_{\mathrm{u}} \in \mathbb{R}^{n \times k}$.

Decomposition of Stable/Unstable Subspaces

For illustration, consider the two subspaces are orthogonal. (the non-orthogonal case will be dealt with later)

Stable subspace: invariant subspace of stable eigenvalues.
$\operatorname{dim}=n-k$, basis matrix $P_{\mathrm{s}} \in \mathbb{R}^{n \times(n-k)}$.

Unstable subspace: invariant subspace of unstable eigenvalues.
$\operatorname{dim}=k$, basis matrix $P_{\mathrm{u}} \in \mathbb{R}^{n \times k}$.

Decomposition of Stable/Unstable Subspaces

Ingredient 1: information of k-dim unstable subspace is sufficient for stabilization.

$$
\left[\begin{array}{c}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]+\left[\begin{array}{c}
P_{\mathrm{u}}^{\top} B \\
P_{\mathrm{s}}^{\top} B
\end{array}\right] u_{t}
$$

Stable subspace with basis $P_{\mathrm{S}} \in \mathbb{R}^{n \times(n-k)}$

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]=\left[\begin{array}{l}
P_{\mathrm{u}}^{\top} \\
P_{\mathrm{s}}^{\top}
\end{array}\right] x_{t}
$$

$\mathcal{Y}_{\mathrm{u}, t}$ Unstable subspace with basis $P_{\mathrm{u}} \in \mathbb{R}^{n \times k}$

Decomposition of Stable/Unstable Subspaces

Ingredient 1: information of k-dim unstable subspace is sufficient for stabilization.

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]}\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]+\left[\begin{array}{l}
P_{\mathrm{u}}^{\top} B \\
P_{\mathrm{s}}^{\top} B
\end{array}\right] u_{t}
$$

- This is block-diagonal because the subspaces are invariant w.r.t. A, and as such

$$
\begin{array}{r}
\text { has all unstable eigenvalues of } A \\
{\left[P_{\mathrm{u}}, P_{\mathrm{s}}\right]^{-1} A\left[P_{\mathrm{u}}, P_{\mathrm{s}}\right]=} \\
{\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]} \\
\text { has all stable eigenvalues of } A
\end{array}
$$

Decomposition of Stable/Unstable Subspaces

Ingredient 1: information of k-dim unstable subspace is sufficient for stabilization.

$$
\begin{aligned}
& {\left[\begin{array}{c}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]+\left[\begin{array}{c}
P_{\mathrm{u}}^{\top} B \\
P_{\mathrm{s}}^{\top} B
\end{array}\right] u_{t}} \\
& \text { setting } u_{t}=-K_{\mathrm{u}} y_{\mathrm{u}, t} \\
& {\left[\begin{array}{c}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}}-P_{\mathrm{u}}^{\top} B K_{\mathrm{u}} & 0 \\
-P_{\mathrm{s}}^{\top} B K_{\mathrm{u}} & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{c}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]}
\end{aligned}
$$

Decomposition of Stable/Unstable Subspaces

Ingredient 1: information of k-dim unstable subspace is sufficient for stabilization.
can be made stable

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\text { via a properly designed } K_{\mathrm{u}}}{M_{\mathrm{u}}-P_{\mathrm{u}}^{\top} B K_{\mathrm{u}}} & 0 \\
\hline-P_{\mathrm{s}}^{\top} B K_{\mathrm{u}} & \left.\boxed{M_{\mathrm{s}}}\right] \\
\text { already a stable matrix }
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]
$$

Decomposition of Stable/Unstable Subspaces

Ingredient 1: information of k-dim unstable subspace is sufficient for stabilization.

- P_{u} : basis of unstable subspace
- M_{u} : transition matrix of unstable component
- $P_{\mathrm{u}}^{\top} B$: projection of B onto unstable subspace.

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t+1} \\
y_{\mathrm{s}, t+1}
\end{array}\right]=\left[\begin{array}{cc}
\begin{array}{c}
\text { can be made stable } \\
\text { via a properly designed } K_{\mathrm{u}}
\end{array} \\
{\left[M_{\mathrm{u}}-P_{\mathrm{u}}^{\top} B K_{\mathrm{u}}\right.} \\
-P_{\mathrm{s}}^{\top} B K_{\mathrm{u}} & 0 \\
\text { already a stable matrix }
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]
$$

Summary of our approach

- Ingredient 1: subspace decomposition
- We show only info about a k-dim subspace is needed for stabilization,
- where k is the number of unstable eigenvalues.
- Ingredient 2: subspace learning
- We design an algorithm using $O(k \log n)$ samples to learn the subspace.
- This incurs a state norm $2^{O(k \log n)} \ll 2^{\Theta(n)}$ in the regime $k \ll n$.

Can we exploit instance specific properties to learn to stabilize without incurring a state norm exponentially large in \boldsymbol{n} ?

How to Learn P_{u} (basis of the unstable subspace)?

Idea: Open-loop system automatically drives states to the unstable subspace.

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t-1} \\
y_{\mathrm{s}, t-1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}}^{t} & 0 \\
0 & M_{\mathrm{s}}^{t}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, 0} \\
y_{\mathrm{s}, 0}
\end{array}\right]
$$

How to Learn P_{u} (basis of the unstable subspace)?

Idea: Open-loop system automatically drives states to the unstable subspace.

$$
\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t-1} \\
y_{\mathrm{s}, t-1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}}^{t} & 0 \\
0 & M_{\mathrm{s}}^{t}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, 0} \\
y_{\mathrm{s}, 0}
\end{array}\right]
$$

How to Learn P_{u} (basis of the unstable subspace)?

Stage 1 of the Algorithm: learning P_{u}

Let the system run open-loop for a period of time $t_{0}=O(k \log n)$.
Set \hat{P}_{u} as an orthonormal basis of the subspace spanned by $\left[x_{t_{0}+1}, \ldots, x_{t_{0}+k}\right]$.

This only takes k samples!
Stable subspace

Unstable subspace

How to Learn M_{u} ?

$$
\begin{aligned}
\text { Recall: } & {\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t-1} \\
y_{\mathrm{s}, t-1}
\end{array}\right], \text { } \begin{aligned}
y_{\mathrm{u}, t} & =M_{\mathrm{u}} y_{\mathrm{u}, t-1} \\
\Rightarrow \quad P_{\mathrm{u}}^{\top} x_{t} & =M_{\mathrm{u}}\left(P_{\mathrm{u}}^{\top} x_{t-1}\right)
\end{aligned}
$$

M_{u} can be obtained by least squares over the projected trajectory!

How to Learn M_{u} ?

Stage 2 of the Algorithm: learning M_{u}

$$
\widehat{M}_{\mathrm{u}} \leftarrow \arg \min _{\widehat{M}_{\mathrm{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}\left(\widehat{M}_{\mathrm{u}}\right):=\sum_{t=t_{0}+1}^{t_{0}+k}\left\|\hat{P}_{\mathrm{u}}^{\top} x_{t+1}-\widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top} x_{t}\right\|^{2}
$$

Full Algorithm (Orthogonal Case)

Stage 1: learning P_{u}
Let the system run open-loop for a period of time $t_{0}=O(k \log n)$.
Set \hat{P}_{u} as an orthonormal basis of the subspace spanned by $\left[x_{t_{0}+1}, \ldots, x_{t_{0}+k}\right]$.
Stage 2: learning M_{u}

$$
\widehat{M}_{\mathrm{u}} \leftarrow \arg \min _{\widehat{M}_{\mathrm{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}\left(\widehat{M}_{\mathrm{u}}\right):=\sum_{t=t_{0}+1}^{t_{0}+k}\left\|\hat{P}_{\mathrm{u}}^{\top} x_{t+1}-\widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top} x_{t}\right\|^{2}
$$

Stage 3: learning $B_{\mathrm{u}}:=P_{\mathrm{u}}^{\top} B$
Run the system for k more steps with input $u_{t_{0}+k+i}=\alpha\left\|x_{t_{0}+k+i}\right\| e_{i}$.
Let $\hat{B}_{\mathrm{u}}=\left[\hat{b}_{1}, \ldots, \hat{b}_{k}\right]$, where $\hat{b}_{i}=\frac{1}{\alpha\left\|x_{t_{0}+k+i}\right\|}\left(\hat{P}_{\mathrm{u}}^{\top} x_{t_{0}+k+i+1}-\widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top} x_{t_{0}+k+i}\right)$.
Stage 4: design the stabilizing controller
Return state feedback controller $u=-\widehat{K} x$, where $\widehat{K}=-\widehat{B}_{\mathrm{u}}^{-1} \widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top}$

Full Algorithm (Orthogonal Case)

Stage 1: learning P_{u}
Let the system run open-loop for a period of time $t_{0}=O(k \log n)$.
Set \hat{P}_{u} as an orthonormal basis of the subspace spanned by $\left[x_{t_{0}+1}, \ldots, x_{t_{0}+k}\right]$.
Stage 2: learning M_{u}

$$
\widehat{M}_{\mathrm{u}} \leftarrow \arg \min _{\widehat{M}_{\mathrm{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}\left(\widehat{M}_{\mathrm{u}}\right):=\sum_{t=+}^{t_{0}+k} \quad \| \hat{n}^{\top} \quad \text { Recall that we only need }
$$

to stabilize this part.

Stage 3: learning $B_{\mathrm{u}}:=P_{\mathrm{u}}^{\top} B$
Run the system for k more steps
Let $\widehat{B}_{\mathrm{u}}=\left[\hat{b}_{1}, \ldots, \hat{b}_{k}\right]$, where $\left.\hat{b}_{i}=\frac{1}{\alpha \| x_{t_{0}+\ldots}} \begin{array}{l}y_{\mathrm{s}, t+1}\end{array}\right]\left[-P_{\mathrm{s}}^{\top} B K_{\mathrm{u}}\right.$
$\left.\begin{array}{c}0 \\ M_{\mathrm{s}}\end{array}\right]\left[\begin{array}{l}y_{\mathrm{u}, t} \\ y_{\mathrm{s}, t}\end{array}\right]$

Stage 4: design the stabilizing controller
Return state feedback controller $u=-\widehat{K} x$, where $\widehat{K}=-\widehat{B}_{\mathrm{u}}^{-1} \widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top}$

Summary of our approach

- Ingredient 1: subspace decomposition
- We show only info about a k-dim subspace is needed for stabilization.
- Ingredient 2: subspace learning
- We design an algorithm using $O(k \log n)$ samples to learn the subspace.

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with orthogonal stable and unstable subsnวn controllability assumption and other regularity as Incuring a state norm of $2^{0(k \log n)}$ approach can stabilize the system with number 0 . Much smaller than worst-case $2^{\Theta(n)}$ when $k \ll n$.

$$
O(k \log n)
$$

- The big-O notation hides dependence on the following quantities:
- $\log (\max (\|A\|,\|B\|))$
- $\frac{1}{\log \frac{\left|\lambda_{k}\right|}{\left|\lambda_{k+1}\right|}}$: larger if the gap between unstable and stable eigenvalues is smaller.
- $\log \frac{1}{c}$: larger when the unstable subspace is less controllable (c is a controllability coefficient).

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with orthogonal stable and unstable subspaces, under proper controllability assumption and other regularity assumptions, the proposed approach can stabilize the system with number of samples less than

$$
O(k \log n)
$$

- Controllability assumption : $\sigma_{\min }\left(P_{\mathrm{u}}^{\top} B\right) \geq c\|B\|$ for some $c>0$.
- Can be relaxed to the usual strong controllability assumption $\sigma_{\min }(\mathcal{C}) \geq \sigma$, where \mathcal{C} is the controllability matrix.
- But this comes at the cost of a worse sample complexity $O\left(k^{2} \log n\right)$.
- Work in progress: relax the controllability assumption, yet keep the $O(k \log n)$ complexity.

Stability Guarantee (Orthogonal Case)

Main Result (orthogonal case, informal version)

For systems with orthogonal stable and unstable subspaces, under proper controllability assumption and other regularity assumptions, the proposed approach can stabilize the system with number of samples less than

$$
O(k \log n)
$$

- Regularity assumptions:
- A is diagonalizable, and has distinct eigenvalues that are not marginally stable.
- The initial state is sampled uniformly at random from the unit sphere.
- Work in progress: the diagonalizable and distinct eigenvalue assumptions can be relaxed, but marginally stable eigenvalue is trickier to handle.

Generalize to Non-orthogonal Case

- We have achieved a $O(k \log n)$ sample complexity and avoided the norm to exponentially blow up in n when subspaces are orthogonal.
- How to generalize to the general non-orthogonal case?

Generalize to Non-orthogonal Case

- Main Challenge: knowing P_{u}^{\top} alone is not enough for an oblique projection.

Generalize to Non-orthogonal Case

- Main Challenge: knowing P_{u}^{\top} alone is not enough for an oblique projection.
- Idea: let the system do the projection instead!
- The open-loop system drives the state to unstable subspace after $\tau=O(1)$ steps.
- No need to do decomposition anymore if $x_{t+\tau}$ is close to the unstable subspace.

Generalize to Non-orthogonal Case

- Main Challenge: knowing P_{u}^{\top} alone is not enough for an oblique projection.
- Idea: let the system do the projection instead!
- The open-loop system drives the state to unstable subspace after $\tau=O(1)$ steps.
- No need to do decomposition anymore if $x_{t+\tau}$ is close to the unstable subspace.
- Control strategy: $\boldsymbol{\tau}$-hop control
- After injecting a control input, run in open loop for $\tau-1$ steps.

τ-hop Control

$$
\begin{aligned}
& {\left[\begin{array}{l}
y_{\mathrm{u}, t+1} \\
y_{2, t+1}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}} & \Delta^{2} \\
0 & M_{2}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{2, t}
\end{array}\right]+\left[\begin{array}{c}
P_{\mathrm{u}}^{\top} B \\
P_{2}^{\top} B
\end{array}\right] u_{t}} \\
& \text { setting } \quad u_{t}=-K_{\mathrm{u}} y_{\mathrm{u}, t} \\
& \text { and } u_{t+1}=\cdots=u_{t+\tau-1}=0 \\
& {\left[\begin{array}{l}
y_{\mathrm{u}, t+\tau} \\
y_{2, t+\tau}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}}^{\tau}-P_{\mathrm{u}}^{\top} A^{\tau-1} B K_{\mathrm{u}} & \Delta_{\tau} \\
-P_{2}^{\top} A^{\tau-1} B K_{\mathrm{u}} & M_{2}^{\tau}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{2, t}
\end{array}\right]}
\end{aligned}
$$

τ-hop Control

$$
\begin{aligned}
& \text { can be made stable } \\
& \text { via a properly designed } K_{\mathrm{u}} \\
& {\left[\begin{array}{l}
y_{\mathrm{u}, t+\tau} \\
y_{2, t+\tau}
\end{array}\right]=\left[\begin{array}{cc}
M_{\mathrm{u}}^{\tau}-P_{\mathrm{u}}^{\top} A^{\tau-1} B K_{\mathrm{u}} & \Delta_{\tau} \\
-P_{2}^{\top} A^{\tau-1} B K_{\mathrm{u}} & M_{2}^{\tau}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{2, t}
\end{array}\right]} \\
& \text { approximately } 0 \text { since the already a stable matrix } \\
& \text { open-loop system does } \\
& \text { the projection itself }
\end{aligned}
$$

Full Algorithm (General Case)

Stage 1: learning P_{u}

Let the system run open-loop for a period of time $t_{0}=O(k \log n)$.
Set \hat{P}_{u} as an orthonormal basis of the subspace spanned by $\left[x_{t_{0}+1}, \ldots, x_{t_{0}+k}\right]$.
Stage 2: learning M_{u}

$$
M_{\mathrm{u}}=\arg \min _{\widehat{M}_{\mathbf{u}} \in \mathbb{R}^{k \times k}} \mathcal{L}\left(\widehat{M}_{\mathrm{u}}\right):=\sum_{t=t_{0}+1}^{t_{0}+k}\left\|\hat{P}_{\mathrm{u}}^{\top} x_{t+1}-\widehat{M}_{\mathrm{u}} \hat{P}_{\mathrm{u}}^{\top} x_{t}\right\|^{2}
$$

Stage 3: learning $B_{\tau}=P_{\mathbf{u}}^{\top} A^{\tau-1} B$
For $i=1, \ldots, k$
Let the system run in open loop for ω time steps.
Run for τ more steps with initial $u_{t_{i}}=\alpha\left\|x_{t_{i}}\right\| e_{i}$, where $t_{i}=t_{0}+k+i \omega+(i-1) \tau$.
Let $\hat{B}_{\tau}=\left[\hat{b}_{1}, \ldots, \widehat{b}_{k}\right]$ where $\hat{b}_{i}=\frac{1}{\alpha\left\|x_{t_{i}}\right\|}\left(\hat{P}_{\mathrm{u}}^{\top} x_{t_{i}+\tau}-\widehat{M}_{\mathrm{u}}^{\tau} \hat{P}_{\mathrm{u}}^{\top} x_{t_{i}}\right)$.

Stage 4: design the stabilizing controller

Return state feedback controller $u=-\widehat{K} x$, where $\widehat{K}=-\widehat{B}_{\tau}^{-1} \widehat{M}_{\mathrm{u}}^{\tau} \hat{P}_{\mathrm{u}}^{\top}$

Stability Guarantee (General Case)

Main Result (general case, informal version)

For LTI systems under proper controllability assumption and other regularity assumptions, the proposed approach can stabilize the system with number of samples less than

$$
O(k \log n)
$$

- The big-O notation hides dependence on the following quantities:
- $\log (\max (\|A\|,\|B\|))$
- $\frac{1}{\log \frac{\left|\lambda_{k}\right|}{\left|\lambda_{k+1}\right|}}$: larger if the gap between unstable and stable eigenvalues is smaller.
- $\log \frac{1}{c}$: larger when the unstable subspace is less controllable (c is a controllability coefficient).
- $\log \frac{1}{1-\xi}: \xi:=1-\sigma_{\min }\left(P_{s}^{\top} P_{2}\right)$ measures "degree of orthogonality" of the stable/unstable subspaces ($\xi=0$ for orthogonal, and $\xi=1$ for linearly dependent).

Stability Guarantee (General Case)

Main Result (general case, informal version)

For LTI systems under proper controllability assumption and other regularity assumptions, the proposed approach can stabilize the system with number of samples less than

$$
O(k \log n)
$$

- Regularity assumptions:
- A is diagonalizable, and has distinct eigenvalues that are not marginally stable.
- The initial state is sampled uniformly at random from the unit sphere.
- $\frac{\left|\lambda_{1}\right|^{2}\left|\lambda_{k+1}\right|}{\left|\lambda_{k}\right|}$ should be small (since we want the τ-hop dynamics to be stable).

How to Handle the Noisy Case?

$$
\begin{aligned}
{\left[\begin{array}{l}
y_{\mathrm{u}, t} \\
y_{\mathrm{s}, t}
\end{array}\right] } & =\left[\begin{array}{cc}
M_{\mathrm{u}} & 0 \\
0 & M_{\mathrm{s}}
\end{array}\right]\left[\begin{array}{l}
y_{\mathrm{u}, t-1} \\
y_{\mathrm{s}, t-1}
\end{array}\right]+w_{t-1} \\
& =\left[\begin{array}{c}
M_{\mathrm{u}}^{t} y_{\mathrm{u}, 0}+M_{\mathrm{u}}^{t-1} w_{\mathrm{u}, 1}+\cdots+w_{\mathrm{u}, t-1} \\
M_{\mathrm{s}}^{t} y_{\mathrm{s}, 0}+M_{\mathrm{s}}^{t-1} w_{\mathrm{s}, 1}+\cdots+w_{\mathrm{s}, t-1}
\end{array}\right] \text { blow up }
\end{aligned}
$$

The open-loop system still functions as automatic projection!

How to Handle the Noisy Case?

Major take-home messages

- Learning only partial information about (A, B) is necessary for stabilization.
- Utilize the stable/unstable subspace decomposition.
- In this way a sample complexity of $O(k \log n)$ can be achieved.
- A novel instance-specific bound for the learn-to-stabilize problem.
- Avoid exponential state-norm blowup in n.

Major take-home messages

- Learning only partial information about (A, B) is necessary for stabilization.
- Utilize the stable/unstable subspace decomposition.
- In this way a sample complexity of $O(k \log n)$ can be achieved.
- A novel instance-specific bound for the learn-to-stabilize problem.
- Avoid exponential state-norm blowup in n.

Future directions:

- Analyze the noisy case.
- Relax regularity assumptions.
- Provide lower bounds.
- Consider output feedback systems.

Reference:

Yang Hu, Adam Wierman, Guannan Qu, "On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory", accepted to NeurIPS 2022. arXiv preprint: arXiv:2202.07187

On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)
Presented by: Guannan Qu
Assistant Professor of ECE, Carnegie Mellon University

