
On the Sample Complexity of Stabilizing
LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)

Presented by: Guannan Qu
Assistant Professor of ECE, Carnegie Mellon University

Sept 29, 2022

A Lot of Interest in Learning-based Control

Learning applied to control

A Lot of Interest in Learning-based Control
no-regret control

e.g. [DMM 18], [ABHKS19]
[AHS19], [SF20], [SSH 20]
[CK21], [CH21], [KLAAH 22]

competitive control
e.g. [GH21], [SLCYW20]

sample complexity
e.g. [DMMRT18], [SMTJR18]

[SR 2019]

dynamic regret with
predictions/delays
e.g. [ZLL21], [LCL19]

Classical Optimal
Control Problems

A lot of focus on learn to control unknown dynamical system
to achieve good performance (regret, competitive ratio, …)

model-free control
e.g. [FGKM18], [MZSJ 19], [TZL21]

Learn-to-Stabilize is Equally Important

Recent literature: Faradonbeh et al. 2019, Chen and Hazan 2020, Lale et al. 2020, Perdomo et al. 2021, Tsiamis et al. 2022.

Older adaptive control literature: Lai 1986, Chen and Zhang 1989, Lai and Ying 1991.

Problem Setup

How to learn from data to stabilize the LTI system?

Linear Time Invariant (LTI) System

One can choose 𝑢𝑢0,𝑢𝑢1, … and observe 𝑥𝑥0, 𝑥𝑥1, …

Here we focus on
the noiseless case.

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡

unknown

Linear Time Invariant (LTI) System

One can choose 𝑢𝑢0,𝑢𝑢1, … and observe 𝑥𝑥0, 𝑥𝑥1, …
𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡

A Direct Attempt

What about use these data to learn 𝐴𝐴,𝐵𝐵…
… and then design a stabilizing controller?

• Variants of this idea has been adopted to solve the learn-to-stabilize problem,
e.g. in [Chen and Hazan 2020], [Lale et al. 2020], etc.
 This attempt is by no means simple, and various challenges including exploration, explosive

trajectory, etc., needs to be addressed properly.

A Direct Attempt

Claim: state norm 𝑥𝑥𝑡𝑡 and regret can reach 2𝛩𝛩(𝑛𝑛) (𝑛𝑛 is dimension of state).

dimension of 𝐴𝐴 is 𝑛𝑛2dimension of each 𝑥𝑥𝑡𝑡 is 𝑛𝑛

It takes at least 𝑛𝑛 state samples to obtain enough information needed to learn 𝐴𝐴.

• Number of state samples {𝑥𝑥𝑡𝑡} to learn 𝐴𝐴,𝐵𝐵 scales linearly in 𝑛𝑛.

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡

A Direct Attempt

• When collecting the 𝑛𝑛 samples needed, the system can be unstable.

• The exponential regret is observed and justified in [Chen and Hazan 2020], etc.

exponentially large state
𝑥𝑥𝑡𝑡 ≈ 2𝛩𝛩(𝑛𝑛)

Claim: state norm 𝑥𝑥𝑡𝑡 and regret can reach 2𝛩𝛩(𝑛𝑛) (𝑛𝑛 is dimension of state).

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡

Lower Bound

Theorem (Chen and Hazan 2020, informal version)
For any randomized algorithm, there exists a LTI instance such that the regret is
lower bounded by

regret ≥ 2𝛺𝛺(𝑛𝑛)

• Is learning the full matrix 𝐴𝐴,𝐵𝐵 really necessary for stabilization?
 For example, if the system is open-loop stable, nothing needs to be learned!

• Are there instance-specific properties that allow us only learn partial information
of 𝐴𝐴,𝐵𝐵 for stabilization?

Can we exploit instance specific properties to learn to stabilize
without incurring a state norm exponentially large in 𝒏𝒏?

The proposed algorithm takes 𝑂𝑂(𝑘𝑘 log𝑛𝑛) samples to stabilize the system, where 𝑘𝑘
is the number of unstable eigenvalues.

Main Result (informal version)

Incurs a state norm of 2𝑂𝑂(𝑘𝑘 log 𝑛𝑛)

Avoids exponential blow-up 2𝛩𝛩(𝑛𝑛) when 𝑘𝑘 ≪ 𝑛𝑛

Can we exploit instance specific properties to learn to stabilize
without incurring a state norm exponentially large in 𝒏𝒏?

𝒌𝒌 = 𝟑𝟑, 𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏

Direct approach blows up to 10144!

Can we exploit instance specific properties to learn to stabilize
without incurring a state norm exponentially large in 𝒏𝒏?

• Ingredient 1: subspace decomposition
 We show only info about a 𝑘𝑘-dim subspace is needed for stabilization,
 where 𝑘𝑘 is the number of unstable eigenvalues.

• Ingredient 2: subspace learning
 We design an algorithm using 𝑂𝑂(𝑘𝑘 log𝑛𝑛) samples to learn the subspace.
 This incurs a state norm 2𝑂𝑂(𝑘𝑘 log 𝑛𝑛) ≪ 2𝛩𝛩 𝑛𝑛 in the regime 𝑘𝑘 ≪ 𝑛𝑛.

Summary of our approach

• Ingredient 1: subspace decomposition
 We show only info about a 𝑘𝑘-dim subspace is needed for stabilization,
 where 𝑘𝑘 is the number of unstable eigenvalues.

• Ingredient 2: subspace learning
 We design an algorithm using 𝑂𝑂(𝑘𝑘 log𝑛𝑛) samples to learn the subspace.
 This incurs a state norm 2𝑂𝑂(𝑘𝑘 log 𝑛𝑛) ≪ 2𝛩𝛩 𝑛𝑛 in the regime 𝑘𝑘 ≪ 𝑛𝑛.

Can we exploit instance specific properties to learn to stabilize
without incurring a state norm exponentially large in 𝒏𝒏?

Summary of our approach

𝑥𝑥𝑡𝑡+1 = 𝐴𝐴𝑥𝑥𝑡𝑡 + 𝐵𝐵𝑢𝑢𝑡𝑡

Decomposition of Stable/Unstable Subspaces

Eigenvalues of 𝑨𝑨: 𝜆𝜆1 ≥ 𝜆𝜆2 ≥ ⋯ ≥ 𝜆𝜆𝑘𝑘 > 1 > 𝜆𝜆𝑘𝑘+1 ≥ ⋯ ≥ 𝜆𝜆𝑛𝑛

Unstable eigenvalues Stable eigenvalues

Stable subspace: invariant subspace of stable eigenvalues.
dim = 𝑛𝑛 − 𝑘𝑘, basis matrix 𝑃𝑃s ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑘𝑘).

Unstable subspace: invariant subspace of unstable eigenvalues.
dim = 𝑘𝑘, basis matrix 𝑃𝑃u ∈ ℝ𝑛𝑛×𝑘𝑘.

For illustration, consider the two subspaces are orthogonal.
(the non-orthogonal case will be dealt with later)

Decomposition of Stable/Unstable Subspaces

Stable subspace: invariant subspace of stable eigenvalues.
dim = 𝑛𝑛 − 𝑘𝑘, basis matrix 𝑃𝑃s ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑘𝑘).

Unstable subspace: invariant subspace of unstable eigenvalues.
dim = 𝑘𝑘, basis matrix 𝑃𝑃u ∈ ℝ𝑛𝑛×𝑘𝑘.

Decomposition of Stable/Unstable Subspaces

Unstable subspace with basis 𝑃𝑃u ∈ ℝ𝑛𝑛×𝑘𝑘

𝑥𝑥𝑡𝑡

𝑦𝑦u,𝑡𝑡

𝑦𝑦s,𝑡𝑡

Ingredient 1: information of 𝑘𝑘-dim unstable subspace is sufficient for stabilization.

Stable subspace with basis 𝑃𝑃s ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑘𝑘)

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

= 𝑃𝑃u⊤

𝑃𝑃s⊤
𝑥𝑥𝑡𝑡

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

+ 𝑃𝑃u⊤𝐵𝐵
𝑃𝑃s⊤𝐵𝐵

𝑢𝑢𝑡𝑡

Decomposition of Stable/Unstable Subspaces

• This is block-diagonal because the subspaces are invariant w.r.t. 𝐴𝐴, and as such

𝑃𝑃u,𝑃𝑃s −1𝐴𝐴 𝑃𝑃u,𝑃𝑃s = 𝑀𝑀u 0
0 𝑀𝑀s

has all unstable eigenvalues of 𝐴𝐴

has all stable eigenvalues of 𝐴𝐴

Ingredient 1: information of 𝑘𝑘-dim unstable subspace is sufficient for stabilization.

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

+ 𝑃𝑃u⊤𝐵𝐵
𝑃𝑃s⊤𝐵𝐵

𝑢𝑢𝑡𝑡

Decomposition of Stable/Unstable Subspaces

setting 𝑢𝑢𝑡𝑡 = −𝐾𝐾u𝑦𝑦u,𝑡𝑡

Ingredient 1: information of 𝑘𝑘-dim unstable subspace is sufficient for stabilization.

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

+ 𝑃𝑃u⊤𝐵𝐵
𝑃𝑃s⊤𝐵𝐵

𝑢𝑢𝑡𝑡

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u − 𝑃𝑃u⊤𝐵𝐵𝐾𝐾u 0
−𝑃𝑃s⊤𝐵𝐵𝐾𝐾u 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

Decomposition of Stable/Unstable Subspaces
Ingredient 1: information of 𝑘𝑘-dim unstable subspace is sufficient for stabilization.

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u − 𝑃𝑃u⊤𝐵𝐵𝐾𝐾u 0
−𝑃𝑃s⊤𝐵𝐵𝐾𝐾u 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

can be made stable
via a properly designed 𝐾𝐾u

already a stable matrix

Decomposition of Stable/Unstable Subspaces
Ingredient 1: information of 𝑘𝑘-dim unstable subspace is sufficient for stabilization.

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u − 𝑃𝑃u⊤𝐵𝐵𝐾𝐾u 0
−𝑃𝑃s⊤𝐵𝐵𝐾𝐾u 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

can be made stable
via a properly designed 𝐾𝐾u

already a stable matrix

• 𝑃𝑃u: basis of unstable subspace
• 𝑀𝑀u: transition matrix of unstable component
• 𝑃𝑃u⊤𝐵𝐵: projection of 𝐵𝐵 onto unstable subspace.

Can we exploit instance specific properties to learn to stabilize
without incurring a state norm exponentially large in 𝒏𝒏?

• Ingredient 1: subspace decomposition
 We show only info about a 𝑘𝑘-dim subspace is needed for stabilization,
 where 𝑘𝑘 is the number of unstable eigenvalues.

• Ingredient 2: subspace learning
 We design an algorithm using 𝑂𝑂(𝑘𝑘 log𝑛𝑛) samples to learn the subspace.
 This incurs a state norm 2𝑂𝑂(𝑘𝑘 log 𝑛𝑛) ≪ 2𝛩𝛩 𝑛𝑛 in the regime 𝑘𝑘 ≪ 𝑛𝑛.

Summary of our approach

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡−1
𝑦𝑦s,𝑡𝑡−1

converges to 0blows up

= 𝑀𝑀u
𝑡𝑡 0

0 𝑀𝑀s
𝑡𝑡

𝑦𝑦u,0
𝑦𝑦s,0

Idea: Open-loop system automatically drives states to the unstable subspace.

How to Learn 𝑃𝑃u (basis of the unstable subspace)?

How to Learn 𝑃𝑃u (basis of the unstable subspace)?

𝑥𝑥0

Unstable subspace

Stable subspace

𝑥𝑥1
𝑥𝑥3 …

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡−1
𝑦𝑦s,𝑡𝑡−1

= 𝑀𝑀u
𝑡𝑡 0

0 𝑀𝑀s
𝑡𝑡

𝑦𝑦u,0
𝑦𝑦s,0

Idea: Open-loop system automatically drives states to the unstable subspace.

𝑥𝑥2

Stage 1 of the Algorithm: learning 𝑃𝑃u
Let the system run open-loop for a period of time 𝑡𝑡0 = 𝑂𝑂 𝑘𝑘 log𝑛𝑛 .
Set �𝑃𝑃u as an orthonormal basis of the subspace spanned by [𝑥𝑥𝑡𝑡0+1, … , 𝑥𝑥𝑡𝑡0+𝑘𝑘].

Unstable subspace

Stable subspace

𝑥𝑥𝑡𝑡0+1
𝑥𝑥𝑡𝑡0+𝑘𝑘

This only takes 𝑘𝑘 samples!

𝑥𝑥0

How to Learn 𝑃𝑃u (basis of the unstable subspace)?

How to Learn 𝑀𝑀u?

𝑦𝑦u,𝑡𝑡 = 𝑀𝑀u𝑦𝑦u,𝑡𝑡−1

Recall:
𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡−1
𝑦𝑦s,𝑡𝑡−1

𝑃𝑃u⊤𝑥𝑥𝑡𝑡 = 𝑀𝑀u 𝑃𝑃u⊤𝑥𝑥𝑡𝑡−1

𝑀𝑀u can be obtained by least squares
over the projected trajectory!

How to Learn 𝑀𝑀u?

Stage 2 of the Algorithm: learning 𝑀𝑀u

�𝑀𝑀u ← arg min
�𝑀𝑀u∈ℝ𝑘𝑘×𝑘𝑘

ℒ �𝑀𝑀u ≔ �
𝑡𝑡=𝑡𝑡0+1

𝑡𝑡0+𝑘𝑘

�𝑃𝑃u⊤𝑥𝑥𝑡𝑡+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡
2

This only takes 𝑂𝑂 𝑘𝑘 samples!

Stage 3: learning 𝐵𝐵u ≔ 𝑃𝑃u⊤𝐵𝐵
Run the system for 𝑘𝑘 more steps with input 𝑢𝑢𝑡𝑡0+𝑘𝑘+𝑖𝑖 = 𝛼𝛼 𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖 𝑒𝑒𝑖𝑖.
Let �𝐵𝐵u = �𝑏𝑏1, … , �𝑏𝑏𝑘𝑘 , where �𝑏𝑏𝑖𝑖 = 1

𝛼𝛼‖𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖‖
�𝑃𝑃u⊤𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖 .

Full Algorithm (Orthogonal Case)
Stage 1: learning 𝑃𝑃u
Let the system run open-loop for a period of time 𝑡𝑡0 = 𝑂𝑂 𝑘𝑘 log𝑛𝑛 .
Set �𝑃𝑃𝑢𝑢 as an orthonormal basis of the subspace spanned by [𝑥𝑥𝑡𝑡0+1, … , 𝑥𝑥𝑡𝑡0+𝑘𝑘].

Stage 2: learning 𝑀𝑀u

�𝑀𝑀u ← arg min
�𝑀𝑀u∈ℝ𝑘𝑘×𝑘𝑘

ℒ �𝑀𝑀u ≔ ∑𝑡𝑡=𝑡𝑡0+1
𝑡𝑡0+𝑘𝑘 �𝑃𝑃u⊤𝑥𝑥𝑡𝑡+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡

2

Stage 4: design the stabilizing controller
Return state feedback controller 𝑢𝑢 = −�𝐾𝐾𝑥𝑥, where �𝐾𝐾 = − �𝐵𝐵u−1 �𝑀𝑀u �𝑃𝑃u⊤

Stage 3: learning 𝐵𝐵u ≔ 𝑃𝑃u⊤𝐵𝐵
Run the system for 𝑘𝑘 more steps with input 𝑢𝑢𝑡𝑡0+𝑘𝑘+𝑖𝑖 = 𝛼𝛼 𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖 𝑒𝑒𝑖𝑖.
Let �𝐵𝐵u = �𝑏𝑏1, … , �𝑏𝑏𝑘𝑘 , where �𝑏𝑏𝑖𝑖 = 1

𝛼𝛼‖𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖‖
�𝑃𝑃u⊤𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡0+𝑘𝑘+𝑖𝑖 .

Full Algorithm (Orthogonal Case)
Stage 1: learning 𝑃𝑃u
Let the system run open-loop for a period of time 𝑡𝑡0 = 𝑂𝑂 𝑘𝑘 log𝑛𝑛 .
Set �𝑃𝑃𝑢𝑢 as an orthonormal basis of the subspace spanned by [𝑥𝑥𝑡𝑡0+1, … , 𝑥𝑥𝑡𝑡0+𝑘𝑘].

Stage 2: learning 𝑀𝑀u

�𝑀𝑀u ← arg min
�𝑀𝑀u∈ℝ𝑘𝑘×𝑘𝑘

ℒ �𝑀𝑀u ≔ ∑𝑡𝑡=𝑡𝑡0+1
𝑡𝑡0+𝑘𝑘 �𝑃𝑃u⊤𝑥𝑥𝑡𝑡+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡

2

Stage 4: design the stabilizing controller
Return state feedback controller 𝑢𝑢 = −�𝐾𝐾𝑥𝑥, where �𝐾𝐾 = − �𝐵𝐵u−1 �𝑀𝑀u �𝑃𝑃u⊤

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦s,𝑡𝑡+1

= 𝑀𝑀u − 𝑃𝑃u⊤𝐵𝐵𝐾𝐾u 0
−𝑃𝑃s⊤𝐵𝐵𝐾𝐾u 𝑀𝑀s

𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

Recall that we only need
to stabilize this part.

• Ingredient 1: subspace decomposition
 We show only info about a 𝑘𝑘-dim subspace is needed for stabilization.

• Ingredient 2: subspace learning
 We design an algorithm using 𝑂𝑂(𝑘𝑘 log𝑛𝑛) samples to learn the subspace.

Summary of our approach

𝑥𝑥0

Unstable subspace

Stable subspace

𝑥𝑥1
𝑥𝑥3 …𝑥𝑥2

basis: 𝑃𝑃s ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑘𝑘)

basis: 𝑃𝑃u ∈ ℝ𝑛𝑛×𝑘𝑘

For systems with orthogonal stable and unstable subspaces, under proper
controllability assumption and other regularity assumptions, the proposed
approach can stabilize the system with number of samples less than

Main Result (orthogonal case, informal version)

Stability Guarantee (Orthogonal Case)

• The big-O notation hides dependence on the following quantities:
 log max(𝐴𝐴 , 𝐵𝐵)


1

log |𝜆𝜆𝑘𝑘|
|𝜆𝜆𝑘𝑘+1|

: larger if the gap between unstable and stable eigenvalues is smaller.

 log 1
𝑐𝑐
: larger when the unstable subspace is less controllable (𝑐𝑐 is a controllability coefficient).

𝑂𝑂 𝑘𝑘 log𝑛𝑛 .

Incuring a state norm of 2𝑂𝑂(𝑘𝑘 log 𝑛𝑛)

Much smaller than worst-case 2Θ(𝑛𝑛) when 𝑘𝑘 ≪ 𝑛𝑛.

For systems with orthogonal stable and unstable subspaces, under proper
controllability assumption and other regularity assumptions, the proposed
approach can stabilize the system with number of samples less than

Main Result (orthogonal case, informal version)

Stability Guarantee (Orthogonal Case)

• Controllability assumption : 𝜎𝜎min 𝑃𝑃u⊤𝐵𝐵 ≥ 𝑐𝑐‖𝐵𝐵‖ for some 𝑐𝑐 > 0.
 Can be relaxed to the usual strong controllability assumption 𝜎𝜎𝑚𝑚𝑖𝑖𝑛𝑛 𝒞𝒞 ≥ 𝜎𝜎, where 𝒞𝒞 is the

controllability matrix.
 But this comes at the cost of a worse sample complexity 𝑂𝑂 𝑘𝑘2 log 𝑛𝑛 .

• Work in progress: relax the controllability assumption, yet keep the 𝑂𝑂 𝑘𝑘 log 𝑛𝑛 complexity.

𝑂𝑂 𝑘𝑘 log𝑛𝑛 .

For systems with orthogonal stable and unstable subspaces, under proper
controllability assumption and other regularity assumptions, the proposed
approach can stabilize the system with number of samples less than

Main Result (orthogonal case, informal version)

Stability Guarantee (Orthogonal Case)

• Regularity assumptions:
 𝐴𝐴 is diagonalizable, and has distinct eigenvalues that are not marginally stable.
 The initial state is sampled uniformly at random from the unit sphere.

• Work in progress: the diagonalizable and distinct eigenvalue assumptions can be relaxed, but
marginally stable eigenvalue is trickier to handle.

𝑂𝑂 𝑘𝑘 log𝑛𝑛 .

Generalize to Non-orthogonal Case

• We have achieved a 𝑂𝑂 𝑘𝑘 log 𝑛𝑛 sample complexity and avoided the norm to
exponentially blow up in 𝑛𝑛 when subspaces are orthogonal.

• How to generalize to the general non-orthogonal case?

Generalize to Non-orthogonal Case

• Main Challenge: knowing 𝑃𝑃u⊤ alone is not enough for an oblique projection.

𝑥𝑥𝑡𝑡

𝑦𝑦u,𝑡𝑡

𝑦𝑦s,𝑡𝑡

The unstable component is NOT 𝑃𝑃u⊤𝑥𝑥𝑡𝑡.

Generalize to Non-orthogonal Case

• Main Challenge: knowing 𝑃𝑃u⊤ alone is not enough for an oblique projection.
• Idea: let the system do the projection instead!

 The open-loop system drives the state to unstable subspace after 𝜏𝜏 = 𝑂𝑂 1 steps.
 No need to do decomposition anymore if 𝑥𝑥𝑡𝑡+𝜏𝜏 is close to the unstable subspace.

𝑥𝑥0 𝑥𝑥1
𝑥𝑥3 …𝑥𝑥2

Generalize to Non-orthogonal Case

• Main Challenge: knowing 𝑃𝑃u⊤ alone is not enough for an oblique projection.
• Idea: let the system do the projection instead!

 The open-loop system drives the state to unstable subspace after 𝜏𝜏 = 𝑂𝑂 1 steps.
 No need to do decomposition anymore if 𝑥𝑥𝑡𝑡+𝜏𝜏 is close to the unstable subspace.

• Control strategy: 𝝉𝝉-hop control
 After injecting a control input,

run in open loop for 𝜏𝜏 − 1 steps.

𝑥𝑥𝑡𝑡+1 𝑥𝑥𝑡𝑡+2
𝑥𝑥𝑡𝑡+𝜏𝜏

𝑥𝑥𝑡𝑡+3

𝝉𝝉-hop Control

setting 𝑢𝑢𝑡𝑡 = −𝐾𝐾u𝑦𝑦u,𝑡𝑡
and 𝑢𝑢𝑡𝑡+1 = ⋯ = 𝑢𝑢𝑡𝑡+𝜏𝜏−1 = 0

𝑦𝑦u,𝑡𝑡+1
𝑦𝑦2,𝑡𝑡+1

= 𝑀𝑀u 𝛥𝛥
0 𝑀𝑀2

𝑦𝑦u,𝑡𝑡
𝑦𝑦2,𝑡𝑡

+
𝑃𝑃u⊤𝐵𝐵
𝑃𝑃2⊤𝐵𝐵

𝑢𝑢𝑡𝑡

𝑦𝑦u,𝑡𝑡+𝜏𝜏
𝑦𝑦2,𝑡𝑡+𝜏𝜏

=
𝑀𝑀u
𝜏𝜏 − 𝑃𝑃u⊤𝐴𝐴𝜏𝜏−1𝐵𝐵𝐾𝐾u 𝛥𝛥𝜏𝜏
−𝑃𝑃2⊤𝐴𝐴𝜏𝜏−1𝐵𝐵𝐾𝐾u 𝑀𝑀2

𝜏𝜏
𝑦𝑦u,𝑡𝑡
𝑦𝑦2,𝑡𝑡

This block is non-zero due to non-orthogonality.

We use subscript “2” because it is not exactly
the stable subspace.

𝝉𝝉-hop Control

𝑦𝑦u,𝑡𝑡+𝜏𝜏
𝑦𝑦2,𝑡𝑡+𝜏𝜏

=
𝑀𝑀u
𝜏𝜏 − 𝑃𝑃u⊤𝐴𝐴𝜏𝜏−1𝐵𝐵𝐾𝐾u 𝛥𝛥𝜏𝜏
−𝑃𝑃2⊤𝐴𝐴𝜏𝜏−1𝐵𝐵𝐾𝐾u 𝑀𝑀2

𝜏𝜏
𝑦𝑦u,𝑡𝑡
𝑦𝑦2,𝑡𝑡

can be made stable
via a properly designed 𝐾𝐾u

already a stable matrixapproximately 0 since the
open-loop system does
the projection itself

Stage 3: learning 𝐵𝐵𝜏𝜏 = 𝑃𝑃u⊤𝐴𝐴𝜏𝜏−1𝐵𝐵
For 𝑖𝑖 = 1, … , 𝑘𝑘

Let the system run in open loop for 𝜔𝜔 time steps.
Run for 𝜏𝜏 more steps with initial 𝑢𝑢𝑡𝑡𝑖𝑖 = 𝛼𝛼 𝑥𝑥𝑡𝑡𝑖𝑖 𝑒𝑒𝑖𝑖, where 𝑡𝑡𝑖𝑖 = 𝑡𝑡0 + 𝑘𝑘 + 𝑖𝑖𝜔𝜔 + 𝑖𝑖 − 1 𝜏𝜏.

Let �𝐵𝐵𝜏𝜏 = �𝑏𝑏1, … , �𝑏𝑏𝑘𝑘 where �𝑏𝑏𝑖𝑖 = 1
𝛼𝛼‖𝑥𝑥𝑡𝑡𝑖𝑖‖

�𝑃𝑃u⊤𝑥𝑥𝑡𝑡𝑖𝑖+𝜏𝜏 − �𝑀𝑀u
𝜏𝜏 �𝑃𝑃u⊤𝑥𝑥𝑡𝑡𝑖𝑖 .

Full Algorithm (General Case)
Stage 1: learning 𝑃𝑃u
Let the system run open-loop for a period of time 𝑡𝑡0 = 𝑂𝑂 𝑘𝑘 log𝑛𝑛 .
Set �𝑃𝑃𝑢𝑢 as an orthonormal basis of the subspace spanned by [𝑥𝑥𝑡𝑡0+1, … , 𝑥𝑥𝑡𝑡0+𝑘𝑘].

Stage 2: learning 𝑀𝑀u

𝑀𝑀u = arg min
�𝑀𝑀u∈ℝ𝑘𝑘×𝑘𝑘

ℒ �𝑀𝑀u ≔ ∑𝑡𝑡=𝑡𝑡0+1
𝑡𝑡0+𝑘𝑘 �𝑃𝑃u⊤𝑥𝑥𝑡𝑡+1 − �𝑀𝑀u �𝑃𝑃u⊤𝑥𝑥𝑡𝑡

2

Stage 4: design the stabilizing controller
Return state feedback controller 𝑢𝑢 = −�𝐾𝐾𝑥𝑥, where �𝐾𝐾 = − �𝐵𝐵𝜏𝜏−1 �𝑀𝑀u

𝜏𝜏 �𝑃𝑃u⊤

For LTI systems under proper controllability assumption and other regularity
assumptions, the proposed approach can stabilize the system with number of
samples less than

Main Result (general case, informal version)

Stability Guarantee (General Case)

• The big-O notation hides dependence on the following quantities:
 log max(𝐴𝐴 , 𝐵𝐵)


1

log |𝜆𝜆𝑘𝑘|
|𝜆𝜆𝑘𝑘+1|

: larger if the gap between unstable and stable eigenvalues is smaller.

 log 1
𝑐𝑐
: larger when the unstable subspace is less controllable (𝑐𝑐 is a controllability coefficient).

 log 1
1−𝜉𝜉

: 𝜉𝜉 ≔ 1 − 𝜎𝜎min 𝑃𝑃s⊤𝑃𝑃2 measures “degree of orthogonality” of the stable/unstable subspaces

(𝜉𝜉 = 0 for orthogonal, and 𝜉𝜉 = 1 for linearly dependent).

𝑂𝑂 𝑘𝑘 log𝑛𝑛 .

For LTI systems under proper controllability assumption and other regularity
assumptions, the proposed approach can stabilize the system with number of
samples less than

Main Result (general case, informal version)

Stability Guarantee (General Case)

• Regularity assumptions:
 𝐴𝐴 is diagonalizable, and has distinct eigenvalues that are not marginally stable.
 The initial state is sampled uniformly at random from the unit sphere.


𝜆𝜆1 2|𝜆𝜆𝑘𝑘+1|

|𝜆𝜆𝑘𝑘|
should be small (since we want the 𝜏𝜏-hop dynamics to be stable).

𝑂𝑂 𝑘𝑘 log𝑛𝑛 .

How to Handle the Noisy Case?
𝑦𝑦u,𝑡𝑡
𝑦𝑦s,𝑡𝑡

= 𝑀𝑀u 0
0 𝑀𝑀s

𝑦𝑦u,𝑡𝑡−1
𝑦𝑦s,𝑡𝑡−1

+ 𝑤𝑤𝑡𝑡−1

=
𝑀𝑀u
𝑡𝑡𝑦𝑦u,0 + 𝑀𝑀u

𝑡𝑡−1𝑤𝑤u,1 + ⋯+ 𝑤𝑤u,𝑡𝑡−1

𝑀𝑀s
𝑡𝑡𝑦𝑦s,0 + 𝑀𝑀s

𝑡𝑡−1𝑤𝑤s,1 + ⋯+ 𝑤𝑤s,𝑡𝑡−1

blow up

stay as 𝑂𝑂(1)

The open-loop system still functions as automatic projection!

𝑥𝑥0 𝑥𝑥1
𝑥𝑥3 …𝑥𝑥2

How to Handle the Noisy Case?

with Gaussian noise
sa

m
pl

e
co

m
pl

ex
ity

without Gaussian noise

state dimension 𝑛𝑛

𝒌𝒌 = 𝟑𝟑, 𝒏𝒏 varying

• Learning only partial information about 𝐴𝐴,𝐵𝐵 is necessary for stabilization.
 Utilize the stable/unstable subspace decomposition.

• In this way a sample complexity of 𝑂𝑂 𝑘𝑘 log𝑛𝑛 can be achieved.
 A novel instance-specific bound for the learn-to-stabilize problem.
 Avoid exponential state-norm blowup in 𝑛𝑛.

Major take-home messages

𝑥𝑥0

Unstable subspace

Stable subspace

𝑥𝑥1
𝑥𝑥3 …𝑥𝑥2

basis: 𝑃𝑃s ∈ ℝ𝑛𝑛×(𝑛𝑛−𝑘𝑘)

basis: 𝑃𝑃u ∈ ℝ𝑛𝑛×𝑘𝑘

• Learning only partial information about 𝐴𝐴,𝐵𝐵 is necessary for stabilization.
 Utilize the stable/unstable subspace decomposition.

• In this way a sample complexity of 𝑂𝑂 𝑘𝑘 log𝑛𝑛 can be achieved.
 A novel instance-specific bound for the learn-to-stabilize problem.
 Avoid exponential state-norm blowup in 𝑛𝑛.

Major take-home messages

Future directions:
• Analyze the noisy case.
• Relax regularity assumptions.
• Provide lower bounds.
• Consider output feedback systems.

Reference:
Yang Hu, Adam Wierman, Guannan Qu, “On the Sample Complexity of Stabilizing LTI Systems on a Single
Trajectory”, accepted to NeurIPS 2022. arXiv preprint: arXiv:2202.07187

On the Sample Complexity of Stabilizing
LTI Systems on a Single Trajectory

Yang Hu (Harvard), Adam Wierman (Caltech), Guannan Qu (CMU)

Presented by: Guannan Qu
Assistant Professor of ECE, Carnegie Mellon University

Sept 29, 2022

	On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory
	A Lot of Interest in Learning-based Control
	A Lot of Interest in Learning-based Control
	Learn-to-Stabilize is Equally Important
	Problem Setup
	A Direct Attempt
	A Direct Attempt
	A Direct Attempt
	Lower Bound
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Decomposition of Stable/Unstable Subspaces
	Slide Number 21
	How to Learn 𝑃 u (basis of the unstable subspace)?
	How to Learn 𝑃 u (basis of the unstable subspace)?
	How to Learn 𝑃 u (basis of the unstable subspace)?
	How to Learn 𝑀 u ?
	How to Learn 𝑀 u ?
	Full Algorithm (Orthogonal Case)
	Full Algorithm (Orthogonal Case)
	Slide Number 29
	Stability Guarantee (Orthogonal Case)
	Stability Guarantee (Orthogonal Case)
	Stability Guarantee (Orthogonal Case)
	Generalize to Non-orthogonal Case
	Generalize to Non-orthogonal Case
	Generalize to Non-orthogonal Case
	Generalize to Non-orthogonal Case
	𝝉-hop Control
	𝝉-hop Control
	Full Algorithm (General Case)
	Stability Guarantee (General Case)
	Stability Guarantee (General Case)
	How to Handle the Noisy Case?
	How to Handle the Noisy Case?
	Slide Number 44
	Slide Number 45
	On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory

