## Bounded-Regret MPC via Perturbation Analysis:

 Prediction Error, Constraints, and NonlinearityYiheng Lin ${ }^{1}$, Yang Hu ${ }^{2}$, Guannan $\mathrm{Qu}^{3}$, Tongxin $\mathrm{Li}^{4}$, Adam Wierman ${ }^{1}$ ${ }^{1}$ Caltech CMS $\quad{ }^{2}$ Harvard CS ${ }^{3}$ CMU ECE ${ }^{3}$ CUHK Shenzhen, SDS

## Model Predictive Control (MPC)

We consider an optimal online control problem in finite horizon $T$

$$
\begin{array}{rr}
\min _{x_{0: T}, u_{0} T-1} \sum_{t=0}^{T-1} f_{t}\left(x_{t}, u_{t} ; \xi_{t}^{*}\right)+F_{T}\left(x_{T} ; \xi_{T}^{*}\right) & \text { (total costs) } \\
\text { s.t. } x_{t+1}=g_{t}\left(x_{t}, u_{t} ; \xi_{t}^{*}\right), & \forall 0 \leq t<T \text {, (dynamics) } \\
s_{t}\left(x_{t}, u_{t} ; \xi_{t}^{*}\right) \leq 0, & \forall 0 \leq t<T, \text { (constraints) } \\
x_{0}=x(0) . & \text { (initial state) } \\
x_{t} \in \mathbb{R}^{n}: \text { state; } u_{t} \in \mathbb{R}^{m}: \text { action; } \xi_{t}^{*} \in \bar{E}_{t}: \text { unknown ground-truth }
\end{array}
$$ uncertainty parameter. At time $t$, the controller observes

$$
\underbrace{x_{t,},\left\{\left(f_{\tau}, g_{\tau}, s_{\tau}\right)\right\}_{\tau=t, \ldots, t+k}}_{\text {Exact predictions }}, \underbrace{\left\{\xi_{\tau \mid t}\right\}_{\tau=t, \ldots, t+k}}_{\text {Inexact predictions }} .
$$

Def. Power of $\tau$-step-away predictions: $P(\tau)=\sum_{t=0}^{T-\tau}\left\|\xi_{t+\tau \mid t}-\xi_{t+\tau}^{*}\right\|^{2}$.
In this work, we consider the following MPC controller at time $t$ :
Alg. If $t<T-k$, commit $u_{t} \leftarrow \psi_{t}^{t+k}\left(x_{t}, \xi_{t: t+k-1 \mid t}, \zeta_{t+k \mid t} ; \mathbb{I}\right)_{v_{t}}$, where $\zeta_{t+k \mid t}=\arg \min _{x} \min _{u} f_{t+k}\left(x, u ; \xi_{t+k \mid t}\right)$ and $\mathbb{I}$ is the indicator function. Else, commit $u_{t} \leftarrow \psi_{t}^{T}\left(x_{t}, \xi_{t: T \mid t} ; F_{T}\right)$.

Here, $\psi_{t_{1}}^{t_{2}}$ denotes the solution to the optimal control problem:

$$
\begin{aligned}
& \psi_{t_{1}}^{t_{2}}\left(z, \xi_{t_{1}: t_{2}-1}, \zeta_{t_{2}} ; F_{t_{2}}\right)=\underset{y_{t_{1} \cdot t_{2}}, v_{t_{1}-t_{2}-1}}{\arg \min } \sum_{t=t_{1}}^{t_{2}-1} f_{t}\left(y_{t}, v_{t} ; \xi_{t}\right)+F_{t_{2}}\left(y_{t_{2}} ; \xi_{t_{2}}\right) \\
& \text { s.t. } y_{t+1}=g_{t}\left(y_{t}, v_{t} ; \xi_{t}\right), \forall t_{1} \leq t<t_{2}, \\
& s_{t}\left(y_{t}, v_{t} ; \xi_{t}\right) \leq 0, \forall t_{1} \leq t<t_{2}, \\
& y_{t_{1}}=z .
\end{aligned}
$$

Objective: Bound the dynamic regret $\operatorname{cost}(\mathrm{MPC})-\operatorname{cost}($ OPT $)$, where OPT denotes the offline optimal trajectory $x_{0: T}^{*}, u_{0: T-1}^{*}$.

## Per-step Error \& Decaying Perturbation

Per-step error is the error injected by MPC at every time step.
Def. The per-step error $e_{t}$ incurred by MPC at time $t$ is the distance between its actual action $u_{t}$ and the clairvoyant optimal action, i.e.,
$e_{t}=\left\|u_{t}-\psi_{t}^{T}\left(x_{t}, \xi_{t: T}^{*} ; F_{T}\right)_{v_{t}}\right\|$, where $u_{t}=\psi_{t}^{t+k}\left(x_{t}, \xi_{t: t+k \mid t}, F_{t+k}\right)_{v_{t}}$.
We need to verify two kinds of decaying perturbation bounds. 1) Perturb the uncertainty parameters given a fixed initial state, i.e.,

$$
\left\|\psi_{t_{1}}^{t_{2}}\left(z, \xi_{t_{1}: t_{2}-1}, \zeta_{t_{2}} ; F_{t_{2}}\right)_{v_{t_{1}}}-\psi_{t_{1}}^{t_{2}}\left(z, \xi_{t_{1}: t_{2}-1}^{\prime}, \zeta_{t_{2}}^{\prime} ; F_{t_{2}}\right)_{v_{t_{1}}}\right\|
$$

$$
\begin{equation*}
\leq \sum_{t=t_{1}}^{t_{2}} q_{1}\left(t-t_{1}\right) \delta_{t} \cdot\|z\|+\sum_{t=t_{1}}^{t_{2}} q_{2}\left(t-t_{1}\right) \delta_{t} \tag{1}
\end{equation*}
$$

where $\delta_{t}=\left\|\xi_{t}-\xi_{t}^{\prime}\right\|$ for $t=t_{1}, \ldots, t_{2}-1$ and $\delta_{t_{2}}=\left\|\zeta_{t_{2}}-\zeta_{t_{2}}^{\prime}\right\|$. 2) Perturb the initial state given fixed uncertainty parameters, i.e.,

$$
\begin{aligned}
& \left\|\psi_{t_{1}}^{t_{2}}\left(z, \xi_{t_{1}: t_{2}-1}, \zeta_{t_{2}} ; F_{t_{2}}\right)_{y_{t} / v_{t}}-\psi_{t_{1}}^{t_{2}}\left(z^{\prime}, \xi_{t_{1}: t_{2}-1}, \zeta_{t_{2}} ; F_{t_{2}}\right)_{y_{t} / v_{t}}\right\| \\
\leq & q_{3}\left(t-t_{1}\right)\left\|z-z^{\prime}\right\|, \text { for } t \in\left[t_{1}, t_{2}\right] .
\end{aligned}
$$ with $t_{1}=t$ and $t_{2}=t+k$ for $t<T-k, F_{t+k}=\mathbb{I}$

$z \in \mathcal{B}\left(x_{t}^{*}, R\right) ; \xi_{t: t+k-1}^{\prime}=\xi_{t: t+k-1}^{*} ; \xi_{t+k}, \xi_{t+k}^{\prime} \in \mathcal{B}\left(x_{t+k}^{*}, R\right) \subseteq \mathbb{R}^{n} ;$ with $t_{1}=t$ and $t_{2}=T$ for $t \geq T-k$, (1) holds for $z \in \mathcal{B}\left(x_{t}^{*}, R\right) ; \xi_{t: T}=$ $\xi_{t: T}^{*} ; F=F_{T}$. Further, (2) holds for any $z, z^{\prime} \in \mathcal{B}\left(x_{t}^{*}, R\right)$ and $\xi_{t_{1}: t_{2}}=\xi_{t_{1}: t_{2}}^{*}$.

We propose a general pipeline to reduce the derivation of dynamic regret for Model Predictive Control in nonlinear time-varying systems to deriving decaying perturbation bounds of optimal trajectories.


Take a picture to download the full paper

## The Pipeline Theorem

We need the following assumptions for the pipeline theorem to hold. - Stability of OPT: $\exists D_{x^{*}}>0$, s.t. $\left\|x_{t}^{*}\right\| \leq D_{x^{*}}$.

- Lipschitz dynamics: $\left\|g_{t}\left(x_{t}, u_{t} ; \xi_{t}^{*}\right)-g_{t}\left(x_{t}, u_{t}^{\prime} ; \xi_{t}^{*}\right)\right\| \leq L_{g}\left\|u_{t}-u_{t}^{\prime}\right\|$
- Well-conditioned costs: every stage cost $f_{t}\left(\cdot, \cdot ; \xi_{t}^{*}\right)$ and the termina cost $F_{T}\left(\cdot ; \xi_{T}^{*}\right)$ are nonnegative, convex, and $\ell$-smooth.
Bound the per-step errors: Given Property 1 holds, we have
Lemma 1. Let Property 1 hold. Suppose $x_{t} \in \mathcal{B}\left(x_{t}^{*}, R / C_{3}\right)$ and $\zeta_{t+k \mid t} \in$ $\mathcal{B}\left(x_{t+k}^{*}, R\right)$ for $t<T-k$. Then, the per-step error of MPC is bounded by

$$
\begin{align*}
e_{t} \leq & \sum_{\tau=0}^{k}\left(\left(R / C_{3}+D_{x^{*}}\right) \cdot q_{1}(\tau)+q_{2}(\tau)\right) \rho_{t, \tau} \\
& +2 R\left(\left(R / C_{3}+D_{x^{*}}\right) \cdot q_{1}(k)+q_{2}(k)\right) . \tag{3}
\end{align*}
$$

Bound the accumulative impact: Once Property 1 holds and the per-step errors are sufficiently small, the trajectory of MPC "remains close" to OPT and the dynamic regret can be bounded.


Lemma 2. Let Property 1 hold. If $e_{\tau} \leq R /\left(C_{3}^{2} L_{q}\right)$ for all $\tau<t$, then $x_{t} \in \mathcal{B}\left(x_{t}^{*}, R / C_{3}\right)$ for MPC and its dynamic regret is upper bounded by

$$
\operatorname{cost}(\mathrm{MPC})-\operatorname{cost}(\mathrm{OPT})=O\left(\sqrt{\left.\operatorname{cost}(\mathrm{OPT}) \cdot \sum_{t=0}^{T-1} e_{t}^{2}+\sum_{t=0}^{T-1} e_{t}^{2}\right)}\right.
$$

Combining Lemma 1 and 2 gives the Pipeline Theorem:
Thm 1. Let Property 1 hold. Suppose $x_{t} \in \mathcal{B}\left(x_{t}^{*}, R / C_{3}\right)$ and $\zeta_{t+k \mid t} \in$ $\mathcal{B}\left(x_{t+k}^{*}, R\right)$ for $t<T-k$. If $k$ and $\rho_{t, \tau}$ satisfy that $(3) \leq R /\left(C_{3}^{2} L_{g}\right)$, then $\operatorname{cost}(\mathrm{MPC})-\operatorname{cost}(\mathrm{OPT})=O\left(\sqrt{\operatorname{cost}(\mathrm{OPT}) \cdot\left(E_{1}+E_{2}\right)}+\left(E_{1}+E_{2}\right)\right)$,
where $E_{1}=\sum_{\tau=0}^{k-1}\left(q_{1}(\tau)+q_{2}(\tau)\right) P(\tau)$ and $E_{2}=\left(q_{1}(k)^{2}+q_{2}(k)^{2}\right) T$.
The dynamic regret depends on both $\{P(\tau)\}_{\tau \geq 0}$ and $k$. We see that 1. No need to predict far future accurately;
2. As $k$ increases, $E_{1} \nearrow, E_{2} \searrow$. The trade-off motivates the problem of MPC horizon selection in our more recent work.

## Apply to General Systems

The pipeline theorem reduces the MPC dynamic regret problem to verifying Prop 1, which is challenging in general and requires:

- All cost/dynamics/constraint functions are in $\mathcal{C}^{2}$;
- Strong second order sufficient condition (SSOSC) holds;
- Linear Independence Constraint Quantification (LICQ) holds;
- Uniform singular spectrum bound for reduced Hessian.

We provide several positive and negative examples for Prop 1:

## Example. Positive examples:

- General costs, $g_{t}\left(x_{t}, u_{t} ; \xi_{t}\right)=A_{t} x_{t}+B_{t} u_{t}+w_{t}\left(\xi_{t}\right)$, and unconstrained.
- $f_{t}\left(x_{t}, u_{t} ; \xi_{t}\right)=\left(x_{t}-\bar{x}_{t}\left(\xi_{t}\right)\right)^{\top} Q_{t}\left(\xi_{t}\right)\left(x_{t}-\bar{x}_{t}\left(\xi_{t}\right)\right)+u_{t}^{\top} R_{t}\left(\xi_{t}\right) u_{t}$,
$g_{t}\left(x_{t}, u_{t} ; \xi_{t}\right)=A_{t}\left(\xi_{t}\right) \cdot x_{t}+B_{t}\left(\xi_{t}\right) \cdot u_{t}+w_{t}\left(\xi_{t}\right)$, and unconstrained. - $n=m=1$, general costs, $x_{t+1}=x_{t}+u_{t}, x_{t} \in[-1,1], u_{t} \geq-0.8$. Negative example:
$\bullet n=m=1$, general costs, $x_{t+1}=x_{t}+u_{t}, x_{t} \in[-1,1], u_{t} \in[-0.8,0.8]$.

